Goodness of fit test  overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
Goodness of fit test  Paired sample $t$ test  $z$ test for a single proportion 


Independent variable  Independent variable  Independent variable  
None  2 paired groups  None  
Dependent variable  Dependent variable  Dependent variable  
One categorical with $J$ independent groups ($J \geqslant 2$)  One quantitative of interval or ratio level  One categorical with 2 independent groups  
Null hypothesis  Null hypothesis  Null hypothesis  
 H_{0}: $\mu = \mu_0$
Here $\mu$ is the population mean of the difference scores, and $\mu_0$ is the population mean of the difference scores according to the null hypothesis, which is usually 0. A difference score is the difference between the first score of a pair and the second score of a pair.  H_{0}: $\pi = \pi_0$
Here $\pi$ is the population proportion of 'successes', and $\pi_0$ is the population proportion of successes according to the null hypothesis.  
Alternative hypothesis  Alternative hypothesis  Alternative hypothesis  
 H_{1} two sided: $\mu \neq \mu_0$ H_{1} right sided: $\mu > \mu_0$ H_{1} left sided: $\mu < \mu_0$  H_{1} two sided: $\pi \neq \pi_0$ H_{1} right sided: $\pi > \pi_0$ H_{1} left sided: $\pi < \pi_0$  
Assumptions  Assumptions  Assumptions  


 
Test statistic  Test statistic  Test statistic  
$X^2 = \sum{\frac{(\mbox{observed cell count}  \mbox{expected cell count})^2}{\mbox{expected cell count}}}$
Here the expected cell count for one cell = $N \times \pi_j$, the observed cell count is the observed sample count in that same cell, and the sum is over all $J$ cells.  $t = \dfrac{\bar{y}  \mu_0}{s / \sqrt{N}}$
Here $\bar{y}$ is the sample mean of the difference scores, $\mu_0$ is the population mean of the difference scores according to the null hypothesis, $s$ is the sample standard deviation of the difference scores, and $N$ is the sample size (number of difference scores). The denominator $s / \sqrt{N}$ is the standard error of the sampling distribution of $\bar{y}$. The $t$ value indicates how many standard errors $\bar{y}$ is removed from $\mu_0$.  $z = \dfrac{p  \pi_0}{\sqrt{\dfrac{\pi_0(1  \pi_0)}{N}}}$
Here $p$ is the sample proportion of successes: $\dfrac{X}{N}$, $N$ is the sample size, and $\pi_0$ is the population proportion of successes according to the null hypothesis.  
Sampling distribution of $X^2$ if H_{0} were true  Sampling distribution of $t$ if H_{0} were true  Sampling distribution of $z$ if H_{0} were true  
Approximately the chisquared distribution with $J  1$ degrees of freedom  $t$ distribution with $N  1$ degrees of freedom  Approximately the standard normal distribution  
Significant?  Significant?  Significant?  
 Two sided:
 Two sided:
 
n.a.  $C\%$ confidence interval for $\mu$  Approximate $C\%$ confidence interval for $\pi$  
  $\bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}}$
where the critical value $t^*$ is the value under the $t_{N1}$ distribution with the area $C / 100$ between $t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). The confidence interval for $\mu$ can also be used as significance test.  Regular (large sample):
 
n.a.  Effect size  n.a.  
  Cohen's $d$: Standardized difference between the sample mean of the difference scores and $\mu_0$: $$d = \frac{\bar{y}  \mu_0}{s}$$ Cohen's $d$ indicates how many standard deviations $s$ the sample mean of the difference scores $\bar{y}$ is removed from $\mu_0.$    
n.a.  Visual representation  n.a.  
    
n.a.  Equivalent to  Equivalent to  
 

 
Example context  Example context  Example context  
Is the proportion of people with a low, moderate, and high social economic status in the population different from $\pi_{low} = 0.2,$ $\pi_{moderate} = 0.6,$ and $\pi_{high} = 0.2$?  Is the average difference between the mental health scores before and after an intervention different from $\mu_0 = 0$?  Is the proportion of smokers amongst office workers different from $\pi_0 = 0.2$? Use the normal approximation for the sampling distribution of the test statistic.  
SPSS  SPSS  SPSS  
Analyze > Nonparametric Tests > Legacy Dialogs > Chisquare...
 Analyze > Compare Means > PairedSamples T Test...
 Analyze > Nonparametric Tests > Legacy Dialogs > Binomial...
 
Jamovi  Jamovi  Jamovi  
Frequencies > N Outcomes  $\chi^2$ Goodness of fit
 TTests > Paired Samples TTest
 Frequencies > 2 Outcomes  Binomial test
 
Practice questions  Practice questions  Practice questions  