Goodness of fit test  overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
Goodness of fit test  Paired sample $t$ test  KruskalWallis test  Sign test 


Independent variable  Independent variable  Independent/grouping variable  Independent variable  
None  2 paired groups  One categorical with $I$ independent groups ($I \geqslant 2$)  2 paired groups  
Dependent variable  Dependent variable  Dependent variable  Dependent variable  
One categorical with $J$ independent groups ($J \geqslant 2$)  One quantitative of interval or ratio level  One of ordinal level  One of ordinal level  
Null hypothesis  Null hypothesis  Null hypothesis  Null hypothesis  
 H_{0}: $\mu = \mu_0$
Here $\mu$ is the population mean of the difference scores, and $\mu_0$ is the population mean of the difference scores according to the null hypothesis, which is usually 0. A difference score is the difference between the first score of a pair and the second score of a pair.  If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in all $I$ populations:
Formulation 1:

 
Alternative hypothesis  Alternative hypothesis  Alternative hypothesis  Alternative hypothesis  
 H_{1} two sided: $\mu \neq \mu_0$ H_{1} right sided: $\mu > \mu_0$ H_{1} left sided: $\mu < \mu_0$  If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in all $I$ populations:
Formulation 1:

 
Assumptions  Assumptions  Assumptions  Assumptions  



 
Test statistic  Test statistic  Test statistic  Test statistic  
$X^2 = \sum{\frac{(\mbox{observed cell count}  \mbox{expected cell count})^2}{\mbox{expected cell count}}}$
Here the expected cell count for one cell = $N \times \pi_j$, the observed cell count is the observed sample count in that same cell, and the sum is over all $J$ cells.  $t = \dfrac{\bar{y}  \mu_0}{s / \sqrt{N}}$
Here $\bar{y}$ is the sample mean of the difference scores, $\mu_0$ is the population mean of the difference scores according to the null hypothesis, $s$ is the sample standard deviation of the difference scores, and $N$ is the sample size (number of difference scores). The denominator $s / \sqrt{N}$ is the standard error of the sampling distribution of $\bar{y}$. The $t$ value indicates how many standard errors $\bar{y}$ is removed from $\mu_0$.  $H = \dfrac{12}{N (N + 1)} \sum \dfrac{R^2_i}{n_i}  3(N + 1)$  $W = $ number of difference scores that is larger than 0  
Sampling distribution of $X^2$ if H_{0} were true  Sampling distribution of $t$ if H_{0} were true  Sampling distribution of $H$ if H_{0} were true  Sampling distribution of $W$ if H_{0} were true  
Approximately the chisquared distribution with $J  1$ degrees of freedom  $t$ distribution with $N  1$ degrees of freedom  For large samples, approximately the chisquared distribution with $I  1$ degrees of freedom. For small samples, the exact distribution of $H$ should be used.  The exact distribution of $W$ under the null hypothesis is the Binomial($n$, $P$) distribution, with $n =$ number of positive differences $+$ number of negative differences, and $P = 0.5$.
If $n$ is large, $W$ is approximately normally distributed under the null hypothesis, with mean $nP = n \times 0.5$ and standard deviation $\sqrt{nP(1P)} = \sqrt{n \times 0.5(1  0.5)}$. Hence, if $n$ is large, the standardized test statistic $$z = \frac{W  n \times 0.5}{\sqrt{n \times 0.5(1  0.5)}}$$ follows approximately the standard normal distribution if the null hypothesis were true.  
Significant?  Significant?  Significant?  Significant?  
 Two sided:
 For large samples, the table with critical $X^2$ values can be used. If we denote $X^2 = H$:
 If $n$ is small, the table for the binomial distribution should be used: Two sided:
If $n$ is large, the table for standard normal probabilities can be used: Two sided:
 
n.a.  $C\%$ confidence interval for $\mu$  n.a.  n.a.  
  $\bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}}$
where the critical value $t^*$ is the value under the $t_{N1}$ distribution with the area $C / 100$ between $t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). The confidence interval for $\mu$ can also be used as significance test.      
n.a.  Effect size  n.a.  n.a.  
  Cohen's $d$: Standardized difference between the sample mean of the difference scores and $\mu_0$: $$d = \frac{\bar{y}  \mu_0}{s}$$ Cohen's $d$ indicates how many standard deviations $s$ the sample mean of the difference scores $\bar{y}$ is removed from $\mu_0.$      
n.a.  Visual representation  n.a.  n.a.  
      
n.a.  Equivalent to  n.a.  Equivalent to  
 
  
Two sided sign test is equivalent to
 
Example context  Example context  Example context  Example context  
Is the proportion of people with a low, moderate, and high social economic status in the population different from $\pi_{low} = 0.2,$ $\pi_{moderate} = 0.6,$ and $\pi_{high} = 0.2$?  Is the average difference between the mental health scores before and after an intervention different from $\mu_0 = 0$?  Do people from different religions tend to score differently on social economic status?  Do people tend to score higher on mental health after a mindfulness course?  
SPSS  SPSS  SPSS  SPSS  
Analyze > Nonparametric Tests > Legacy Dialogs > Chisquare...
 Analyze > Compare Means > PairedSamples T Test...
 Analyze > Nonparametric Tests > Legacy Dialogs > K Independent Samples...
 Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
 
Jamovi  Jamovi  Jamovi  Jamovi  
Frequencies > N Outcomes  $\chi^2$ Goodness of fit
 TTests > Paired Samples TTest
 ANOVA > One Way ANOVA  KruskalWallis
 Jamovi does not have a specific option for the sign test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the two sided $p$ value that would have resulted from the sign test. Go to:
ANOVA > Repeated Measures ANOVA  Friedman
 
Practice questions  Practice questions  Practice questions  Practice questions  