Goodness of fit test - overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table
Goodness of fit test | Paired sample $t$ test | Spearman's rho | Two sample $z$ test |
|
---|---|---|---|---|
Independent variable | Independent variable | Variable 1 | Independent/grouping variable | |
None | 2 paired groups | One of ordinal level | One categorical with 2 independent groups | |
Dependent variable | Dependent variable | Variable 2 | Dependent variable | |
One categorical with $J$ independent groups ($J \geqslant 2$) | One quantitative of interval or ratio level | One of ordinal level | One quantitative of interval or ratio level | |
Null hypothesis | Null hypothesis | Null hypothesis | Null hypothesis | |
| H0: $\mu = \mu_0$
Here $\mu$ is the population mean of the difference scores, and $\mu_0$ is the population mean of the difference scores according to the null hypothesis, which is usually 0. A difference score is the difference between the first score of a pair and the second score of a pair. | H0: $\rho_s = 0$
Here $\rho_s$ is the Spearman correlation in the population. The Spearman correlation is a measure for the strength and direction of the monotonic relationship between two variables of at least ordinal measurement level. In words, the null hypothesis would be: H0: there is no monotonic relationship between the two variables in the population. | H0: $\mu_1 = \mu_2$
Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2. | |
Alternative hypothesis | Alternative hypothesis | Alternative hypothesis | Alternative hypothesis | |
| H1 two sided: $\mu \neq \mu_0$ H1 right sided: $\mu > \mu_0$ H1 left sided: $\mu < \mu_0$ | H1 two sided: $\rho_s \neq 0$ H1 right sided: $\rho_s > 0$ H1 left sided: $\rho_s < 0$ | H1 two sided: $\mu_1 \neq \mu_2$ H1 right sided: $\mu_1 > \mu_2$ H1 left sided: $\mu_1 < \mu_2$ | |
Assumptions | Assumptions | Assumptions | Assumptions | |
|
|
|
| |
Test statistic | Test statistic | Test statistic | Test statistic | |
$X^2 = \sum{\frac{(\mbox{observed cell count} - \mbox{expected cell count})^2}{\mbox{expected cell count}}}$
Here the expected cell count for one cell = $N \times \pi_j$, the observed cell count is the observed sample count in that same cell, and the sum is over all $J$ cells. | $t = \dfrac{\bar{y} - \mu_0}{s / \sqrt{N}}$
Here $\bar{y}$ is the sample mean of the difference scores, $\mu_0$ is the population mean of the difference scores according to the null hypothesis, $s$ is the sample standard deviation of the difference scores, and $N$ is the sample size (number of difference scores). The denominator $s / \sqrt{N}$ is the standard error of the sampling distribution of $\bar{y}$. The $t$ value indicates how many standard errors $\bar{y}$ is removed from $\mu_0$. | $t = \dfrac{r_s \times \sqrt{N - 2}}{\sqrt{1 - r_s^2}} $ Here $r_s$ is the sample Spearman correlation and $N$ is the sample size. The sample Spearman correlation $r_s$ is equal to the Pearson correlation applied to the rank scores. | $z = \dfrac{(\bar{y}_1 - \bar{y}_2) - 0}{\sqrt{\dfrac{\sigma^2_1}{n_1} + \dfrac{\sigma^2_2}{n_2}}} = \dfrac{\bar{y}_1 - \bar{y}_2}{\sqrt{\dfrac{\sigma^2_1}{n_1} + \dfrac{\sigma^2_2}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $\sigma^2_1$ is the population variance in population 1, $\sigma^2_2$ is the population variance in population 2, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis. The denominator $\sqrt{\frac{\sigma^2_1}{n_1} + \frac{\sigma^2_2}{n_2}}$ is the standard deviation of the sampling distribution of $\bar{y}_1 - \bar{y}_2$. The $z$ value indicates how many of these standard deviations $\bar{y}_1 - \bar{y}_2$ is removed from 0. Note: we could just as well compute $\bar{y}_2 - \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$. | |
Sampling distribution of $X^2$ if H0 were true | Sampling distribution of $t$ if H0 were true | Sampling distribution of $t$ if H0 were true | Sampling distribution of $z$ if H0 were true | |
Approximately the chi-squared distribution with $J - 1$ degrees of freedom | $t$ distribution with $N - 1$ degrees of freedom | Approximately the $t$ distribution with $N - 2$ degrees of freedom | Standard normal distribution | |
Significant? | Significant? | Significant? | Significant? | |
| Two sided:
| Two sided:
| Two sided:
| |
n.a. | $C\%$ confidence interval for $\mu$ | n.a. | $C\%$ confidence interval for $\mu_1 - \mu_2$ | |
- | $\bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}}$
where the critical value $t^*$ is the value under the $t_{N-1}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). The confidence interval for $\mu$ can also be used as significance test. | - | $(\bar{y}_1 - \bar{y}_2) \pm z^* \times \sqrt{\dfrac{\sigma^2_1}{n_1} + \dfrac{\sigma^2_2}{n_2}}$
where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval). The confidence interval for $\mu_1 - \mu_2$ can also be used as significance test. | |
n.a. | Effect size | n.a. | n.a. | |
- | Cohen's $d$: Standardized difference between the sample mean of the difference scores and $\mu_0$: $$d = \frac{\bar{y} - \mu_0}{s}$$ Cohen's $d$ indicates how many standard deviations $s$ the sample mean of the difference scores $\bar{y}$ is removed from $\mu_0.$ | - | - | |
n.a. | Visual representation | n.a. | Visual representation | |
- | ![]() | - | ![]() | |
n.a. | Equivalent to | n.a. | n.a. | |
- |
| - | - | |
Example context | Example context | Example context | Example context | |
Is the proportion of people with a low, moderate, and high social economic status in the population different from $\pi_{low} = 0.2,$ $\pi_{moderate} = 0.6,$ and $\pi_{high} = 0.2$? | Is the average difference between the mental health scores before and after an intervention different from $\mu_0 = 0$? | Is there a monotonic relationship between physical health and mental health? | Is the average mental health score different between men and women? Assume that in the population, the standard devation of the mental health scores is $\sigma_1 = 2$ amongst men and $\sigma_2 = 2.5$ amongst women. | |
SPSS | SPSS | SPSS | n.a. | |
Analyze > Nonparametric Tests > Legacy Dialogs > Chi-square...
| Analyze > Compare Means > Paired-Samples T Test...
| Analyze > Correlate > Bivariate...
| - | |
Jamovi | Jamovi | Jamovi | n.a. | |
Frequencies > N Outcomes - $\chi^2$ Goodness of fit
| T-Tests > Paired Samples T-Test
| Regression > Correlation Matrix
| - | |
Practice questions | Practice questions | Practice questions | Practice questions | |