Friedman test - overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table
Friedman test | Binomial test for a single proportion |
|
---|---|---|
Independent/grouping variable | Independent variable | |
One within subject factor ($\geq 2$ related groups) | None | |
Dependent variable | Dependent variable | |
One of ordinal level | One categorical with 2 independent groups | |
Null hypothesis | Null hypothesis | |
H0: the population scores in any of the related groups are not systematically higher or lower than the population scores in any of the other related groups
Usually the related groups are the different measurement points. Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher. | H0: $\pi = \pi_0$
Here $\pi$ is the population proportion of 'successes', and $\pi_0$ is the population proportion of successes according to the null hypothesis. | |
Alternative hypothesis | Alternative hypothesis | |
H1: the population scores in some of the related groups are systematically higher or lower than the population scores in other related groups | H1 two sided: $\pi \neq \pi_0$ H1 right sided: $\pi > \pi_0$ H1 left sided: $\pi < \pi_0$ | |
Assumptions | Assumptions | |
|
| |
Test statistic | Test statistic | |
$Q = \dfrac{12}{N \times k(k + 1)} \sum R^2_i - 3 \times N(k + 1)$
Here $N$ is the number of 'blocks' (usually the subjects - so if you have 4 repeated measurements for 60 subjects, $N$ equals 60), $k$ is the number of related groups (usually the number of repeated measurements), and $R_i$ is the sum of ranks in group $i$. Remember that multiplication precedes addition, so first compute $\frac{12}{N \times k(k + 1)} \times \sum R^2_i$ and then subtract $3 \times N(k + 1)$. Note: if ties are present in the data, the formula for $Q$ is more complicated. | $X$ = number of successes in the sample | |
Sampling distribution of $Q$ if H0 were true | Sampling distribution of $X$ if H0 were true | |
If the number of blocks $N$ is large, approximately the chi-squared distribution with $k - 1$ degrees of freedom.
For small samples, the exact distribution of $Q$ should be used. | Binomial($n$, $P$) distribution.
Here $n = N$ (total sample size), and $P = \pi_0$ (population proportion according to the null hypothesis). | |
Significant? | Significant? | |
If the number of blocks $N$ is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
| Two sided:
| |
Example context | Example context | |
Is there a difference in depression level between measurement point 1 (pre-intervention), measurement point 2 (1 week post-intervention), and measurement point 3 (6 weeks post-intervention)? | Is the proportion of smokers amongst office workers different from $\pi_0 = 0.2$? | |
SPSS | SPSS | |
Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
| Analyze > Nonparametric Tests > Legacy Dialogs > Binomial...
| |
Jamovi | Jamovi | |
ANOVA > Repeated Measures ANOVA - Friedman
| Frequencies > 2 Outcomes - Binomial test
| |
Practice questions | Practice questions | |