Sign test - overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons (max. of 3) by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table
Sign test |
|
---|---|
Independent variable | |
2 paired groups | |
Dependent variable | |
One of ordinal level | |
Null hypothesis | |
| |
Alternative hypothesis | |
| |
Assumptions | |
| |
Test statistic | |
$W = $ number of difference scores that is larger than 0 | |
Sampling distribution of $W$ if H0 were true | |
The exact distribution of $W$ under the null hypothesis is the Binomial($n$, $P$) distribution, with $n =$ number of positive differences $+$ number of negative differences, and $P = 0.5$.
If $n$ is large, $W$ is approximately normally distributed under the null hypothesis, with mean $nP = n \times 0.5$ and standard deviation $\sqrt{nP(1-P)} = \sqrt{n \times 0.5(1 - 0.5)}$. Hence, if $n$ is large, the standardized test statistic $$z = \frac{W - n \times 0.5}{\sqrt{n \times 0.5(1 - 0.5)}}$$ follows approximately the standard normal distribution if the null hypothesis were true. | |
Significant? | |
If $n$ is small, the table for the binomial distribution should be used: Two sided:
If $n$ is large, the table for standard normal probabilities can be used: Two sided:
| |
Equivalent to | |
Two sided sign test is equivalent to
| |
Example context | |
Do people tend to score higher on mental health after a mindfulness course? | |
SPSS | |
Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
| |
Jamovi | |
Jamovi does not have a specific option for the sign test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the two sided $p$ value that would have resulted from the sign test. Go to:
ANOVA > Repeated Measures ANOVA - Friedman
| |
Practice questions | |