Sign test - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Sign test
Pearson correlation
Two way ANOVA
Independent variableVariable 1Independent variables
2 paired groupsOne quantitative of interval or ratio levelTwo categorical, the first with $I$ independent groups and the second with $J$ independent groups ($I \geqslant 2$, $J \geqslant 2$)
Dependent variableVariable 2Dependent variable
One of ordinal levelOne quantitative of interval or ratio levelOne quantitative of interval or ratio level
Null hypothesisNull hypothesisNull hypothesis
  • P(first score of a pair exceeds second score of a pair) = P(second score of a pair exceeds first score of a pair)
If the dependent variable is measured on a continuous scale, this can also be formulated as:
  • The median of the difference scores is zero in the population
$\rho = \rho_0$
$\rho$ is the unknown Pearson correlation in the population, $\rho_0$ is the correlation in the population according to the null hypothesis (usually 0)
ANOVA $F$ tests:
  • For main and interaction effects together (model): no main effects and interaction effect
  • For independent variable A: no main effect for A
  • For independent variable B: no main effect for B
  • For the interaction term: no interaction effect between A and B
We could also perform $t$ tests for specific contrasts and multiple comparisons, just like we did with one way ANOVA. However, this is more advanced stuff.
Alternative hypothesisAlternative hypothesisAlternative hypothesis
  • Two sided: P(first score of a pair exceeds second score of a pair) $\neq$ P(second score of a pair exceeds first score of a pair)
  • Right sided: P(first score of a pair exceeds second score of a pair) > P(second score of a pair exceeds first score of a pair)
  • Left sided: P(first score of a pair exceeds second score of a pair) < P(second score of a pair exceeds first score of a pair)
If the dependent variable is measured on a continuous scale, this can also be formulated as:
  • Two sided: the median of the difference scores is different from zero in the population
  • Right sided: the median of the difference scores is larger than zero in the population
  • Left sided: the median of the difference scores is smaller than zero in the population
Two sided: $\rho \neq \rho_0$
Right sided: $\rho > \rho_0$
Left sided: $\rho < \rho_0$
ANOVA $F$ tests:
  • For main and interaction effects together (model): there is a main effect for A, and/or for B, and/or an interaction effect
  • For independent variable A: there is a main effect for A
  • For independent variable B: there is a main effect for B
  • For the interaction term: there is an interaction effect between A and B
AssumptionsAssumptions of tests for correlationAssumptions
Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
  • In the population, the two variables are jointly normally distributed (this covers the normality, homoscedasticity, and linearity assumptions)
  • Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
Note: these assumptions are only important for the significance test and confidence interval, not for the correlation coefficient itself. The correlation coefficient just measures the strength of the linear relationship between two variables.
  • Within each of the $I \times J$ populations, the scores on the dependent variable are normally distributed
  • The standard deviation of the scores on the dependent variable is the same in each of the $I \times J$ populations
  • For each of the $I \times J$ groups, the sample is an independent and simple random sample from the population defined by that group. That is, within and between groups, observations are independent of one another
  • Equal sample sizes for each group make the interpretation of the ANOVA output easier (unequal sample sizes result in overlap in the sum of squares; this is advanced stuff)
Test statisticTest statisticTest statistic
$W = $ number of difference scores that is larger than 0Test statistic for testing H0: $\rho = 0$:
  • $t = \dfrac{r \times \sqrt{N - 2}}{\sqrt{1 - r^2}} $
    where $r$ is the sample correlation $r = \frac{1}{N - 1} \sum_{j}\Big(\frac{x_{j} - \bar{x}}{s_x} \Big) \Big(\frac{y_{j} - \bar{y}}{s_y} \Big)$ and $N$ is the sample size
Test statistic for testing values for $\rho$ other than $\rho = 0$:
  • $z = \dfrac{r_{Fisher} - \rho_{0_{Fisher}}}{\sqrt{\dfrac{1}{N - 3}}}$
    • $r_{Fisher} = \dfrac{1}{2} \times \log\Bigg(\dfrac{1 + r}{1 - r} \Bigg )$, where $r$ is the sample correlation
    • $\rho_{0_{Fisher}} = \dfrac{1}{2} \times \log\Bigg( \dfrac{1 + \rho_0}{1 - \rho_0} \Bigg )$, where $\rho_0$ is the population correlation according to H0
For main and interaction effects together (model):
  • $F = \dfrac{\mbox{mean square model}}{\mbox{mean square error}}$
For independent variable A:
  • $F = \dfrac{\mbox{mean square A}}{\mbox{mean square error}}$
For independent variable B:
  • $F = \dfrac{\mbox{mean square B}}{\mbox{mean square error}}$
For the interaction term:
  • $F = \dfrac{\mbox{mean square interaction}}{\mbox{mean square error}}$
Note: mean square error is also known as mean square residual or mean square within
n.a.n.a.Pooled standard deviation
--$ \begin{aligned} s_p &= \sqrt{\dfrac{\sum\nolimits_{subjects} (\mbox{subject's score} - \mbox{its group mean})^2}{N - (I \times J)}}\\ &= \sqrt{\dfrac{\mbox{sum of squares error}}{\mbox{degrees of freedom error}}}\\ &= \sqrt{\mbox{mean square error}} \end{aligned} $
Sampling distribution of $W$ if H0 were trueSampling distribution of $t$ and of $z$ if H0 were trueSampling distribution of $F$ if H0 were true
The exact distribution of $W$ under the null hypothesis is the Binomial($n$, $p$) distribution, with $n =$ number of positive differences $+$ number of negative differences, and $p = 0.5$.

If $n$ is large, $W$ is approximately normally distributed under the null hypothesis, with mean $np = n \times 0.5$ and standard deviation $\sqrt{np(1-p)} = \sqrt{n \times 0.5(1 - 0.5)}$. Hence, if $n$ is large, the standardized test statistic $$z = \frac{W - n \times 0.5}{\sqrt{n \times 0.5(1 - 0.5)}}$$ follows approximately a standard normal distribution if the null hypothesis were true.
Sampling distribution of $t$:
  • $t$ distribution with $N - 2$ degrees of freedom
Sampling distribution of $z$:
  • Approximately standard normal
For main and interaction effects together (model):
  • $F$ distribution with $(I - 1) + (J - 1) + (I - 1) \times (J - 1)$ (df model, numerator) and $N - (I \times J)$ (df error, denominator) degrees of freedom
For independent variable A:
  • $F$ distribution with $I - 1$ (df A, numerator) and $N - (I \times J)$ (df error, denominator) degrees of freedom
For independent variable B:
  • $F$ distribution with $J - 1$ (df B, numerator) and $N - (I \times J)$ (df error, denominator) degrees of freedom
For the interaction term:
  • $F$ distribution with $(I - 1) \times (J - 1)$ (df interaction, numerator) and $N - (I \times J)$ (df error, denominator) degrees of freedom
Here $N$ is the total sample size
Significant?Significant?Significant?
If $n$ is small, the table for the binomial distribution should be used:
Two sided:
  • Check if $W$ observed in sample is in the rejection region or
  • Find two sided $p$ value corresponding to observed $W$ and check if it is equal to or smaller than $\alpha$
Right sided:
  • Check if $W$ observed in sample is in the rejection region or
  • Find right sided $p$ value corresponding to observed $W$ and check if it is equal to or smaller than $\alpha$
Left sided:
  • Check if $W$ observed in sample is in the rejection region or
  • Find left sided $p$ value corresponding to observed $W$ and check if it is equal to or smaller than $\alpha$

If $n$ is large, the table for standard normal probabilities can be used:
Two sided: Right sided: Left sided:
$t$ Test two sided: $t$ Test right sided: $t$ Test left sided: $z$ Test two sided: $z$ Test right sided: $z$ Test left sided:
  • Check if $F$ observed in sample is equal to or larger than critical value $F^*$ or
  • Find $p$ value corresponding to observed $F$ and check if it is equal to or smaller than $\alpha$
n.a.Approximate $C$% confidence interval for $\rho$n.a.
-First compute approximate $C$% confidence interval for $\rho_{Fisher}$:
  • $lower_{Fisher} = r_{Fisher} - z^* \times \sqrt{\dfrac{1}{N - 3}}$
  • $upper_{Fisher} = r_{Fisher} + z^* \times \sqrt{\dfrac{1}{N - 3}}$
where $r_{Fisher} = \frac{1}{2} \times \log\Bigg(\dfrac{1 + r}{1 - r} \Bigg )$ and $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval).
Then transform back to get approximate $C$% confidence interval for $\rho$:
  • lower bound = $\dfrac{e^{2 \times lower_{Fisher}} - 1}{e^{2 \times lower_{Fisher}} + 1}$
  • upper bound = $\dfrac{e^{2 \times upper_{Fisher}} - 1}{e^{2 \times upper_{Fisher}} + 1}$
-
n.a.Properties of the Pearson correlation coefficientEffect size
-
  • The Pearson correlation coefficient is a measure for the linear relationship between two quantitative variables.
  • The Pearson correlation coefficient squared reflects the proportion of variance explained in one variable by the other variable.
  • The Pearson correlation coefficient can take on values between -1 (perfect negative relationship) and 1 (perfect positive relationship). A value of 0 means no linear relationship.
  • The absolute size of the Pearson correlation coefficient is not affected by any linear transformation of the variables. However, the sign of the Pearson correlation will flip when the scores on one of the two variables are multiplied by a negative number (reversing the direction of measurement of that variable).
    For example:
    • the correlation between $x$ and $y$ is equivalent to the correlation between $3x + 5$ and $2y - 6$.
    • the absolute value of the correlation between $x$ and $y$ is equivalent to the absolute value of the correlation between $-3x + 5$ and $2y - 6$. However, the signs of the two correlation coefficients will be in opposite directions, due to the multiplication of $x$ by $-3$.
  • The Pearson correlation coefficient does not say anything about causality.
  • The Pearson correlation coefficient is sensitive to outliers.
  • Proportion variance explained $R^2$:
    Proportion variance of the dependent variable $y$ explained by the independent variables and the interaction effect together:
    $$ \begin{align} R^2 &= \dfrac{\mbox{sum of squares model}}{\mbox{sum of squares total}} \end{align} $$ $R^2$ is the proportion variance explained in the sample. It is a positively biased estimate of the proportion variance explained in the population.

  • Proportion variance explained $\eta^2$:
    Proportion variance of the dependent variable $y$ explained by an independent variable or interaction effect:
    $$ \begin{align} \eta^2_A &= \dfrac{\mbox{sum of squares A}}{\mbox{sum of squares total}}\\ \\ \eta^2_B &= \dfrac{\mbox{sum of squares B}}{\mbox{sum of squares total}}\\ \\ \eta^2_{int} &= \dfrac{\mbox{sum of squares int}}{\mbox{sum of squares total}} \end{align} $$ $\eta^2$ is the proportion variance explained in the sample. It is a positively biased estimate of the proportion variance explained in the population.

  • Proportion variance explained $\omega^2$:
    Corrects for the positive bias in $\eta^2$ and is equal to:
    $$ \begin{align} \omega^2_A &= \dfrac{\mbox{sum of squares A} - \mbox{degrees of freedom A} \times \mbox{mean square error}}{\mbox{sum of squares total} + \mbox{mean square error}}\\ \\ \omega^2_B &= \dfrac{\mbox{sum of squares B} - \mbox{degrees of freedom B} \times \mbox{mean square error}}{\mbox{sum of squares total} + \mbox{mean square error}}\\ \\ \omega^2_{int} &= \dfrac{\mbox{sum of squares int} - \mbox{degrees of freedom int} \times \mbox{mean square error}}{\mbox{sum of squares total} + \mbox{mean square error}}\\ \end{align} $$ $\omega^2$ is a better estimate of the explained variance in the population than $\eta^2$. Only for balanced designs (equal sample sizes).

  • Proportion variance explained $\eta^2_{partial}$: $$ \begin{align} \eta^2_{partial\,A} &= \frac{\mbox{sum of squares A}}{\mbox{sum of squares A} + \mbox{sum of squares error}}\\ \\ \eta^2_{partial\,B} &= \frac{\mbox{sum of squares B}}{\mbox{sum of squares B} + \mbox{sum of squares error}}\\ \\ \eta^2_{partial\,int} &= \frac{\mbox{sum of squares int}}{\mbox{sum of squares int} + \mbox{sum of squares error}} \end{align} $$
n.a.n.a.ANOVA table
--
two way ANOVA table
Equivalent toEquivalent toEquivalent to
Two sided sign test is equivalent to OLS regression with one independent variable:
  • $b_1 = r \times \frac{s_y}{s_x}$
  • Results significance test ($t$ and $p$ value) testing $H_0$: $\beta_1 = 0$ are equivalent to results significance test testing $H_0$: $\rho = 0$
OLS regression with two, categorical independent variables and the interaction term, transformed into $(I - 1)$ + $(J - 1)$ + $(I - 1) \times (J - 1)$ code variables.
Example contextExample contextExample context
Do people tend to score higher on mental health after a mindfulness course?Is there a linear relationship between physical health and mental health?Is the average mental health score different between people from a low, moderate, and high economic class? And is the average mental health score different between men and women? And is there an interaction effect between economic class and gender?
SPSSSPSSSPSS
Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
  • Put the two paired variables in the boxes below Variable 1 and Variable 2
  • Under Test Type, select the Sign test
Analyze > Correlate > Bivariate...
  • Put your two variables in the box below Variables
Analyze > General Linear Model > Univariate...
  • Put your dependent (quantitative) variable in the box below Dependent Variable and your two independent (grouping) variables in the box below Fixed Factor(s)
JamoviJamoviJamovi
Jamovi does not have a specific option for the sign test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the two sided $p$ value that would have resulted from the sign test. Go to:

ANOVA > Repeated Measures ANOVA - Friedman
  • Put the two paired variables in the box below Measures
Regression > Correlation Matrix
  • Put your two variables in the white box at the right
  • Under Correlation Coefficients, select Pearson (selected by default)
  • Under Hypothesis, select your alternative hypothesis
ANOVA > ANOVA
  • Put your dependent (quantitative) variable in the box below Dependent Variable and your two independent (grouping) variables in the box below Fixed Factors
Practice questionsPractice questionsPractice questions