Sign test  overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
Sign test  Pearson correlation  $z$ test for the difference between two proportions  Friedman test  One sample Wilcoxon signedrank test 


Independent variable  Variable 1  Independent/grouping variable  Independent/grouping variable  Independent variable  
2 paired groups  One quantitative of interval or ratio level  One categorical with 2 independent groups  One within subject factor ($\geq 2$ related groups)  None  
Dependent variable  Variable 2  Dependent variable  Dependent variable  Dependent variable  
One of ordinal level  One quantitative of interval or ratio level  One categorical with 2 independent groups  One of ordinal level  One of ordinal level  
Null hypothesis  Null hypothesis  Null hypothesis  Null hypothesis  Null hypothesis  
 H_{0}: $\rho = \rho_0$
$\rho$ is the unknown Pearson correlation in the population, $\rho_0$ is the correlation in the population according to the null hypothesis (usually 0). The Pearson correlation is a measure for the strength and direction of the linear relationship between two variables of at least interval measurement level.  H_{0}: $\pi_1 = \pi_2$
$\pi_1$ is the population proportion of 'successes' for group 1; $\pi_2$ is the population proportion of 'successes' for group 2  H_{0}: the population scores in any of the related groups are not systematically higher or lower than the population scores in any of the other related groups
Usually the related groups are the different measurement points. Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher.  H_{0}: $m = m_0$
$m$ is the population median; $m_0$ is the population median according to the null hypothesis.  
Alternative hypothesis  Alternative hypothesis  Alternative hypothesis  Alternative hypothesis  Alternative hypothesis  
 H_{1} two sided: $\rho \neq \rho_0$ H_{1} right sided: $\rho > \rho_0$ H_{1} left sided: $\rho < \rho_0$  H_{1} two sided: $\pi_1 \neq \pi_2$ H_{1} right sided: $\pi_1 > \pi_2$ H_{1} left sided: $\pi_1 < \pi_2$  H_{1}: the population scores in some of the related groups are systematically higher or lower than the population scores in other related groups  H_{1} two sided: $m \neq m_0$ H_{1} right sided: $m > m_0$ H_{1} left sided: $m < m_0$  
Assumptions  Assumptions of test for correlation  Assumptions  Assumptions  Assumptions  




 
Test statistic  Test statistic  Test statistic  Test statistic  Test statistic  
$W = $ number of difference scores that is larger than 0  Test statistic for testing H0: $\rho = 0$:
 $z = \dfrac{p_1  p_2}{\sqrt{p(1  p)\Bigg(\dfrac{1}{n_1} + \dfrac{1}{n_2}\Bigg)}}$
$p_1$ is the sample proportion of successes in group 1: $\dfrac{X_1}{n_1}$, $p_2$ is the sample proportion of successes in group 2: $\dfrac{X_2}{n_2}$, $p$ is the total proportion of successes in the sample: $\dfrac{X_1 + X_2}{n_1 + n_2}$, $n_1$ is the sample size of group 1, $n_2$ is the sample size of group 2 Note: we could just as well compute $p_2  p_1$ in the numerator, but then the left sided alternative becomes $\pi_2 < \pi_1$, and the right sided alternative becomes $\pi_2 > \pi_1$  $Q = \dfrac{12}{N \times k(k + 1)} \sum R^2_i  3 \times N(k + 1)$
Here $N$ is the number of 'blocks' (usually the subjects  so if you have 4 repeated measurements for 60 subjects, $N$ equals 60), $k$ is the number of related groups (usually the number of repeated measurements), and $R_i$ is the sum of ranks in group $i$. Remember that multiplication precedes addition, so first compute $\frac{12}{N \times k(k + 1)} \times \sum R^2_i$ and then subtract $3 \times N(k + 1)$. Note: if ties are present in the data, the formula for $Q$ is more complicated.  Two different types of test statistics can be used; both will result in the same test outcome. We will denote the first option the $W_1$ statistic (also known as the $T$ statistic), and the second option the $W_2$ statistic.
In order to compute each of the test statistics, follow the steps below:
 
Sampling distribution of $W$ if H_{0} were true  Sampling distribution of $t$ and of $z$ if H_{0} were true  Sampling distribution of $z$ if H_{0} were true  Sampling distribution of $Q$ if H_{0} were true  Sampling distribution of $W_1$ and of $W_2$ if H_{0} were true  
The exact distribution of $W$ under the null hypothesis is the Binomial($n$, $p$) distribution, with $n =$ number of positive differences $+$ number of negative differences, and $p = 0.5$.
If $n$ is large, $W$ is approximately normally distributed under the null hypothesis, with mean $np = n \times 0.5$ and standard deviation $\sqrt{np(1p)} = \sqrt{n \times 0.5(1  0.5)}$. Hence, if $n$ is large, the standardized test statistic $$z = \frac{W  n \times 0.5}{\sqrt{n \times 0.5(1  0.5)}}$$ follows approximately the standard normal distribution if the null hypothesis were true.  Sampling distribution of $t$:
 Approximately the standard normal distribution  If the number of blocks $N$ is large, approximately the chisquared distribution with $k  1$ degrees of freedom.
For small samples, the exact distribution of $Q$ should be used.  Sampling distribution of $W_1$:
If $N_r$ is large, $W_1$ is approximately normally distributed with mean $\mu_{W_1}$ and standard deviation $\sigma_{W_1}$ if the null hypothesis were true. Here $$\mu_{W_1} = \frac{N_r(N_r + 1)}{4}$$ $$\sigma_{W_1} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{24}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_1  \mu_{W_1}}{\sigma_{W_1}}$$ follows approximately the standard normal distribution if the null hypothesis were true. Sampling distribution of $W_2$: If $N_r$ is large, $W_2$ is approximately normally distributed with mean $0$ and standard deviation $\sigma_{W_2}$ if the null hypothesis were true. Here $$\sigma_{W_2} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{6}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_2}{\sigma_{W_2}}$$ follows approximately the standard normal distribution if the null hypothesis were true. If $N_r$ is small, the exact distribution of $W_1$ or $W_2$ should be used. Note: the formula for the standard deviations $\sigma_{W_1}$ and $\sigma_{W_2}$ is more complicated if ties are present in the data.  
Significant?  Significant?  Significant?  Significant?  Significant?  
If $n$ is small, the table for the binomial distribution should be used: Two sided:
If $n$ is large, the table for standard normal probabilities can be used: Two sided:
 $t$ Test two sided:
 Two sided:
 If the number of blocks $N$ is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
 For large samples, the table for standard normal probabilities can be used: Two sided:
 
n.a.  Approximate $C$% confidence interval for $\rho$  Approximate $C\%$ confidence interval for $\pi_1  \pi_2$  n.a.  n.a.  
  First compute the approximate $C$% confidence interval for $\rho_{Fisher}$:
Then transform back to get the approximate $C$% confidence interval for $\rho$:
 Regular (large sample):
     
n.a.  Properties of the Pearson correlation coefficient  n.a.  n.a.  n.a.  
 
       
Equivalent to  Equivalent to  Equivalent to  n.a.  n.a.  
Two sided sign test is equivalent to
 OLS regression with one independent variable:
 When testing two sided: chisquared test for the relationship between two categorical variables, where both categorical variables have 2 levels      
Example context  Example context  Example context  Example context  Example context  
Do people tend to score higher on mental health after a mindfulness course?  Is there a linear relationship between physical health and mental health?  Is the proportion of smokers different between men and women? Use the normal approximation for the sampling distribution of the test statistic.  Is there a difference in depression level between measurement point 1 (preintervention), measurement point 2 (1 week postintervention), and measurement point 3 (6 weeks postintervention)?  Is the median mental health score different from 50?  
SPSS  SPSS  SPSS  SPSS  SPSS  
Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
 Analyze > Correlate > Bivariate...
 SPSS does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chisquared test instead. The $p$ value resulting from this chisquared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:
Analyze > Descriptive Statistics > Crosstabs...
 Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
 Specify the measurement level of your variable on the Variable View tab, in the column named Measure. Then go to:
Analyze > Nonparametric Tests > One Sample...
 
Jamovi  Jamovi  Jamovi  Jamovi  Jamovi  
Jamovi does not have a specific option for the sign test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the two sided $p$ value that would have resulted from the sign test. Go to:
ANOVA > Repeated Measures ANOVA  Friedman
 Regression > Correlation Matrix
 Jamovi does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chisquared test instead. The $p$ value resulting from this chisquared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:
Frequencies > Independent Samples  $\chi^2$ test of association
 ANOVA > Repeated Measures ANOVA  Friedman
 TTests > One Sample TTest
 
Practice questions  Practice questions  Practice questions  Practice questions  Practice questions  