# Sign test - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Sign test
Pearson correlation
$z$ test for the difference between two proportions
Friedman test
One sample $t$ test for the mean
Independent variableVariable 1Independent/grouping variableIndependent/grouping variableIndependent variable
2 paired groupsOne quantitative of interval or ratio levelOne categorical with 2 independent groupsOne within subject factor ($\geq 2$ related groups)None
Dependent variableVariable 2Dependent variableDependent variableDependent variable
One of ordinal levelOne quantitative of interval or ratio levelOne categorical with 2 independent groupsOne of ordinal levelOne quantitative of interval or ratio level
Null hypothesisNull hypothesisNull hypothesisNull hypothesisNull hypothesis
• H0: P(first score of a pair exceeds second score of a pair) = P(second score of a pair exceeds first score of a pair)
If the dependent variable is measured on a continuous scale, this can also be formulated as:
• H0: the population median of the difference scores is equal to zero
A difference score is the difference between the first score of a pair and the second score of a pair.
H0: $\rho = \rho_0$

$\rho$ is the unknown Pearson correlation in the population, $\rho_0$ is the correlation in the population according to the null hypothesis (usually 0). The Pearson correlation is a measure for the strength and direction of the linear relationship between two variables of at least interval measurement level.
H0: $\pi_1 = \pi_2$

$\pi_1$ is the population proportion of 'successes' for group 1; $\pi_2$ is the population proportion of 'successes' for group 2
H0: the population scores in any of the related groups are not systematically higher or lower than the population scores in any of the other related groups

Usually the related groups are the different measurement points. Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher.
H0: $\mu = \mu_0$

$\mu$ is the population mean; $\mu_0$ is the population mean according to the null hypothesis
Alternative hypothesisAlternative hypothesisAlternative hypothesisAlternative hypothesisAlternative hypothesis
• H1 two sided: P(first score of a pair exceeds second score of a pair) $\neq$ P(second score of a pair exceeds first score of a pair)
• H1 right sided: P(first score of a pair exceeds second score of a pair) > P(second score of a pair exceeds first score of a pair)
• H1 left sided: P(first score of a pair exceeds second score of a pair) < P(second score of a pair exceeds first score of a pair)
If the dependent variable is measured on a continuous scale, this can also be formulated as:
• H1 two sided: the population median of the difference scores is different from zero
• H1 right sided: the population median of the difference scores is larger than zero
• H1 left sided: the population median of the difference scores is smaller than zero
H1 two sided: $\rho \neq \rho_0$
H1 right sided: $\rho > \rho_0$
H1 left sided: $\rho < \rho_0$
H1 two sided: $\pi_1 \neq \pi_2$
H1 right sided: $\pi_1 > \pi_2$
H1 left sided: $\pi_1 < \pi_2$
H1: the population scores in some of the related groups are systematically higher or lower than the population scores in other related groups H1 two sided: $\mu \neq \mu_0$
H1 right sided: $\mu > \mu_0$
H1 left sided: $\mu < \mu_0$
AssumptionsAssumptions of test for correlationAssumptionsAssumptionsAssumptions
• Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
• In the population, the two variables are jointly normally distributed (this covers the normality, homoscedasticity, and linearity assumptions)
• Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
Note: these assumptions are only important for the significance test and confidence interval, not for the correlation coefficient itself. The correlation coefficient just measures the strength of the linear relationship between two variables.
• Sample size is large enough for $z$ to be approximately normally distributed. Rule of thumb:
• Significance test: number of successes and number of failures are each 5 or more in both sample groups
• Regular (large sample) 90%, 95%, or 99% confidence interval: number of successes and number of failures are each 10 or more in both sample groups
• Plus four 90%, 95%, or 99% confidence interval: sample sizes of both groups are 5 or more
• Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2. That is, within and between groups, observations are independent of one another
• Sample of 'blocks' (usually the subjects) is a simple random sample from the population. That is, blocks are independent of one another
• Scores are normally distributed in the population
• Sample is a simple random sample from the population. That is, observations are independent of one another
Test statisticTest statisticTest statisticTest statisticTest statistic
$W =$ number of difference scores that is larger than 0Test statistic for testing H0: $\rho = 0$:
• $t = \dfrac{r \times \sqrt{N - 2}}{\sqrt{1 - r^2}}$
where $r$ is the sample correlation $r = \frac{1}{N - 1} \sum_{j}\Big(\frac{x_{j} - \bar{x}}{s_x} \Big) \Big(\frac{y_{j} - \bar{y}}{s_y} \Big)$ and $N$ is the sample size
Test statistic for testing values for $\rho$ other than $\rho = 0$:
• $z = \dfrac{r_{Fisher} - \rho_{0_{Fisher}}}{\sqrt{\dfrac{1}{N - 3}}}$
• $r_{Fisher} = \dfrac{1}{2} \times \log\Bigg(\dfrac{1 + r}{1 - r} \Bigg )$, where $r$ is the sample correlation
• $\rho_{0_{Fisher}} = \dfrac{1}{2} \times \log\Bigg( \dfrac{1 + \rho_0}{1 - \rho_0} \Bigg )$, where $\rho_0$ is the population correlation according to H0
$z = \dfrac{p_1 - p_2}{\sqrt{p(1 - p)\Bigg(\dfrac{1}{n_1} + \dfrac{1}{n_2}\Bigg)}}$
$p_1$ is the sample proportion of successes in group 1: $\dfrac{X_1}{n_1}$, $p_2$ is the sample proportion of successes in group 2: $\dfrac{X_2}{n_2}$, $p$ is the total proportion of successes in the sample: $\dfrac{X_1 + X_2}{n_1 + n_2}$, $n_1$ is the sample size of group 1, $n_2$ is the sample size of group 2
Note: we could just as well compute $p_2 - p_1$ in the numerator, but then the left sided alternative becomes $\pi_2 < \pi_1$, and the right sided alternative becomes $\pi_2 > \pi_1$
$Q = \dfrac{12}{N \times k(k + 1)} \sum R^2_i - 3 \times N(k + 1)$

Here $N$ is the number of 'blocks' (usually the subjects - so if you have 4 repeated measurements for 60 subjects, $N$ equals 60), $k$ is the number of related groups (usually the number of repeated measurements), and $R_i$ is the sum of ranks in group $i$.

Remember that multiplication precedes addition, so first compute $\frac{12}{N \times k(k + 1)} \times \sum R^2_i$ and then subtract $3 \times N(k + 1)$.

Note: if ties are present in the data, the formula for $Q$ is more complicated.
$t = \dfrac{\bar{y} - \mu_0}{s / \sqrt{N}}$
$\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to the null hypothesis, $s$ is the sample standard deviation, $N$ is the sample size.

The denominator $s / \sqrt{N}$ is the standard error of the sampling distribution of $\bar{y}$. The $t$ value indicates how many standard errors $\bar{y}$ is removed from $\mu_0$.
Sampling distribution of $W$ if H0 were trueSampling distribution of $t$ and of $z$ if H0 were trueSampling distribution of $z$ if H0 were trueSampling distribution of $Q$ if H0 were trueSampling distribution of $t$ if H0 were true
The exact distribution of $W$ under the null hypothesis is the Binomial($n$, $p$) distribution, with $n =$ number of positive differences $+$ number of negative differences, and $p = 0.5$.

If $n$ is large, $W$ is approximately normally distributed under the null hypothesis, with mean $np = n \times 0.5$ and standard deviation $\sqrt{np(1-p)} = \sqrt{n \times 0.5(1 - 0.5)}$. Hence, if $n$ is large, the standardized test statistic $$z = \frac{W - n \times 0.5}{\sqrt{n \times 0.5(1 - 0.5)}}$$ follows approximately the standard normal distribution if the null hypothesis were true.
Sampling distribution of $t$:
• $t$ distribution with $N - 2$ degrees of freedom
Sampling distribution of $z$:
• Approximately the standard normal distribution
Approximately the standard normal distributionIf the number of blocks $N$ is large, approximately the chi-squared distribution with $k - 1$ degrees of freedom.

For small samples, the exact distribution of $Q$ should be used.
$t$ distribution with $N - 1$ degrees of freedom
Significant?Significant?Significant?Significant?Significant?
If $n$ is small, the table for the binomial distribution should be used:
Two sided:
• Check if $W$ observed in sample is in the rejection region or
• Find two sided $p$ value corresponding to observed $W$ and check if it is equal to or smaller than $\alpha$
Right sided:
• Check if $W$ observed in sample is in the rejection region or
• Find right sided $p$ value corresponding to observed $W$ and check if it is equal to or smaller than $\alpha$
Left sided:
• Check if $W$ observed in sample is in the rejection region or
• Find left sided $p$ value corresponding to observed $W$ and check if it is equal to or smaller than $\alpha$

If $n$ is large, the table for standard normal probabilities can be used:
Two sided:
Right sided:
Left sided:
$t$ Test two sided:
$t$ Test right sided:
$t$ Test left sided:
$z$ Test two sided:
$z$ Test right sided:
$z$ Test left sided:
Two sided:
Right sided:
Left sided:
If the number of blocks $N$ is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
• Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
• Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
Two sided:
Right sided:
Left sided:
n.a.Approximate $C$% confidence interval for $\rho$Approximate $C\%$ confidence interval for $\pi_1 - \pi_2$n.a.$C\%$ confidence interval for $\mu$
-First compute the approximate $C$% confidence interval for $\rho_{Fisher}$:
• $lower_{Fisher} = r_{Fisher} - z^* \times \sqrt{\dfrac{1}{N - 3}}$
• $upper_{Fisher} = r_{Fisher} + z^* \times \sqrt{\dfrac{1}{N - 3}}$
where $r_{Fisher} = \frac{1}{2} \times \log\Bigg(\dfrac{1 + r}{1 - r} \Bigg )$ and the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval).
Then transform back to get the approximate $C$% confidence interval for $\rho$:
• lower bound = $\dfrac{e^{2 \times lower_{Fisher}} - 1}{e^{2 \times lower_{Fisher}} + 1}$
• upper bound = $\dfrac{e^{2 \times upper_{Fisher}} - 1}{e^{2 \times upper_{Fisher}} + 1}$
Regular (large sample):
• $(p_1 - p_2) \pm z^* \times \sqrt{\dfrac{p_1(1 - p_1)}{n_1} + \dfrac{p_2(1 - p_2)}{n_2}}$
where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval)
With plus four method:
• $(p_{1.plus} - p_{2.plus}) \pm z^* \times \sqrt{\dfrac{p_{1.plus}(1 - p_{1.plus})}{n_1 + 2} + \dfrac{p_{2.plus}(1 - p_{2.plus})}{n_2 + 2}}$
where $p_{1.plus} = \dfrac{X_1 + 1}{n_1 + 2}$, $p_{2.plus} = \dfrac{X_2 + 1}{n_2 + 2}$, and the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval)
-$\bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}}$
where the critical value $t^*$ is the value under the $t_{N-1}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20)

The confidence interval for $\mu$ can also be used as significance test.
n.a.Properties of the Pearson correlation coefficientn.a.n.a.Effect size
-
• The Pearson correlation coefficient is a measure for the linear relationship between two quantitative variables.
• The Pearson correlation coefficient squared reflects the proportion of variance explained in one variable by the other variable.
• The Pearson correlation coefficient can take on values between -1 (perfect negative relationship) and 1 (perfect positive relationship). A value of 0 means no linear relationship.
• The absolute size of the Pearson correlation coefficient is not affected by any linear transformation of the variables. However, the sign of the Pearson correlation will flip when the scores on one of the two variables are multiplied by a negative number (reversing the direction of measurement of that variable).
For example:
• the correlation between $x$ and $y$ is equivalent to the correlation between $3x + 5$ and $2y - 6$.
• the absolute value of the correlation between $x$ and $y$ is equivalent to the absolute value of the correlation between $-3x + 5$ and $2y - 6$. However, the signs of the two correlation coefficients will be in opposite directions, due to the multiplication of $x$ by $-3$.
• The Pearson correlation coefficient does not say anything about causality.
• The Pearson correlation coefficient is sensitive to outliers.
--Cohen's $d$:
Standardized difference between the sample mean and $\mu_0$: $$d = \frac{\bar{y} - \mu_0}{s}$$ Indicates how many standard deviations $s$ the sample mean $\bar{y}$ is removed from $\mu_0$
n.a.n.a.n.a.n.a.Visual representation
----
Equivalent toEquivalent toEquivalent ton.a.n.a.
Two sided sign test is equivalent to
OLS regression with one independent variable:
• $b_1 = r \times \frac{s_y}{s_x}$
• Results significance test ($t$ and $p$ value) testing $H_0$: $\beta_1 = 0$ are equivalent to results significance test testing $H_0$: $\rho = 0$
When testing two sided: chi-squared test for the relationship between two categorical variables, where both categorical variables have 2 levels--
Example contextExample contextExample contextExample contextExample context
Do people tend to score higher on mental health after a mindfulness course?Is there a linear relationship between physical health and mental health?Is the proportion of smokers different between men and women? Use the normal approximation for the sampling distribution of the test statistic.Is there a difference in depression level between measurement point 1 (pre-intervention), measurement point 2 (1 week post-intervention), and measurement point 3 (6 weeks post-intervention)?Is the average mental health score of office workers different from $\mu_0$ = 50?
SPSSSPSSSPSSSPSSSPSS
Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
• Put the two paired variables in the boxes below Variable 1 and Variable 2
• Under Test Type, select the Sign test
Analyze > Correlate > Bivariate...
• Put your two variables in the box below Variables
SPSS does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chi-squared test instead. The $p$ value resulting from this chi-squared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:

Analyze > Descriptive Statistics > Crosstabs...
• Put your independent (grouping) variable in the box below Row(s), and your dependent variable in the box below Column(s)
• Click the Statistics... button, and click on the square in front of Chi-square
• Continue and click OK
Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
• Put the $k$ variables containing the scores for the $k$ related groups in the white box below Test Variables
• Under Test Type, select the Friedman test
Analyze > Compare Means > One-Sample T Test...
• Put your variable in the box below Test Variable(s)
• Fill in the value for $\mu_0$ in the box next to Test Value
JamoviJamoviJamoviJamoviJamovi
Jamovi does not have a specific option for the sign test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the two sided $p$ value that would have resulted from the sign test. Go to:

ANOVA > Repeated Measures ANOVA - Friedman
• Put the two paired variables in the box below Measures
Regression > Correlation Matrix
• Put your two variables in the white box at the right
• Under Correlation Coefficients, select Pearson (selected by default)
• Under Hypothesis, select your alternative hypothesis
Jamovi does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chi-squared test instead. The $p$ value resulting from this chi-squared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:

Frequencies > Independent Samples - $\chi^2$ test of association
• Put your independent (grouping) variable in the box below Rows, and your dependent variable in the box below Columns
ANOVA > Repeated Measures ANOVA - Friedman
• Put the $k$ variables containing the scores for the $k$ related groups in the box below Measures
T-Tests > One Sample T-Test
• Put your variable in the box below Dependent Variables
• Under Hypothesis, fill in the value for $\mu_0$ in the box next to Test Value, and select your alternative hypothesis
Practice questionsPractice questionsPractice questionsPractice questionsPractice questions