Sign test - overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table
Sign test | McNemar's test |
|
---|---|---|
Independent variable | Independent variable | |
2 paired groups | 2 paired groups | |
Dependent variable | Dependent variable | |
One of ordinal level | One categorical with 2 independent groups | |
Null hypothesis | Null hypothesis | |
| Let's say that the scores on the dependent variable are scored 0 and 1. Then for each pair of scores, the data allow four options:
Other formulations of the null hypothesis are:
| |
Alternative hypothesis | Alternative hypothesis | |
| The alternative hypothesis H1 is that for each pair of scores, P(first score of pair is 0 while second score of pair is 1) $\neq$ P(first score of pair is 1 while second score of pair is 0). That is, the probability that a pair of scores switches from 0 to 1 is not the same as the probability that a pair of scores switches from 1 to 0. Other formulations of the alternative hypothesis are:
| |
Assumptions | Assumptions | |
|
| |
Test statistic | Test statistic | |
$W = $ number of difference scores that is larger than 0 | $X^2 = \dfrac{(b - c)^2}{b + c}$
Here $b$ is the number of pairs in the sample for which the first score is 0 while the second score is 1, and $c$ is the number of pairs in the sample for which the first score is 1 while the second score is 0. | |
Sampling distribution of $W$ if H0 were true | Sampling distribution of $X^2$ if H0 were true | |
The exact distribution of $W$ under the null hypothesis is the Binomial($n$, $P$) distribution, with $n =$ number of positive differences $+$ number of negative differences, and $P = 0.5$.
If $n$ is large, $W$ is approximately normally distributed under the null hypothesis, with mean $nP = n \times 0.5$ and standard deviation $\sqrt{nP(1-P)} = \sqrt{n \times 0.5(1 - 0.5)}$. Hence, if $n$ is large, the standardized test statistic $$z = \frac{W - n \times 0.5}{\sqrt{n \times 0.5(1 - 0.5)}}$$ follows approximately the standard normal distribution if the null hypothesis were true. | If $b + c$ is large enough (say, > 20), approximately the chi-squared distribution with 1 degree of freedom. If $b + c$ is small, the Binomial($n$, $P$) distribution should be used, with $n = b + c$ and $P = 0.5$. In that case the test statistic becomes equal to $b$. | |
Significant? | Significant? | |
If $n$ is small, the table for the binomial distribution should be used: Two sided:
If $n$ is large, the table for standard normal probabilities can be used: Two sided:
| For test statistic $X^2$:
| |
Equivalent to | Equivalent to | |
Two sided sign test is equivalent to
|
| |
Example context | Example context | |
Do people tend to score higher on mental health after a mindfulness course? | Does a tv documentary about spiders change whether people are afraid (yes/no) of spiders? | |
SPSS | SPSS | |
Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
| Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
| |
Jamovi | Jamovi | |
Jamovi does not have a specific option for the sign test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the two sided $p$ value that would have resulted from the sign test. Go to:
ANOVA > Repeated Measures ANOVA - Friedman
| Frequencies > Paired Samples - McNemar test
| |
Practice questions | Practice questions | |