Sign test - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Sign test
Chi-squared test for the relationship between two categorical variables
Independent variableIndependent /column variable
2 paired groupsOne categorical with $I$ independent groups ($I \geqslant 2$)
Dependent variableDependent /row variable
One of ordinal levelOne categorical with $J$ independent groups ($J \geqslant 2$)
Null hypothesisNull hypothesis
  • P(first score of a pair exceeds second score of a pair) = P(second score of a pair exceeds first score of a pair)
If the dependent variable is measured on a continuous scale, this can also be formulated as:
  • The median of the difference scores is zero in the population
  • There is no association between the row and column variable
    More precise statement:
    • If there are $I$ independent random samples of size $n_i$ from each of $I$ populations, defined by the independent variable:
      The distribution of the dependent variable is the same in each of the $I$ populations
    • If there is one random sample of size $N$ from the total population:
      The row and column variables are independent
Alternative hypothesisAlternative hypothesis
  • Two sided: P(first score of a pair exceeds second score of a pair) $\neq$ P(second score of a pair exceeds first score of a pair)
  • Right sided: P(first score of a pair exceeds second score of a pair) > P(second score of a pair exceeds first score of a pair)
  • Left sided: P(first score of a pair exceeds second score of a pair) < P(second score of a pair exceeds first score of a pair)
If the dependent variable is measured on a continuous scale, this can also be formulated as:
  • Two sided: the median of the difference scores is different from zero in the population
  • Right sided: the median of the difference scores is larger than zero in the population
  • Left sided: the median of the difference scores is smaller than zero in the population
  • There is an association between the row and column variable
    More precise statement:
    • If there are $I$ independent random samples of size $n_i$ from each of $I$ populations, defined by the independent variable:
      The distribution of the dependent variable is not the same in all of the $I$ populations
    • If there is one random sample of size $N$ from the total population:
      The row and column variables are dependent
AssumptionsAssumptions
Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
  • Sample size is large enough for $X^2$ to be approximately chi-squared distributed under the null hypothesis. Rule of thumb:
    • 2 $\times$ 2 table: all four expected cell counts are 5 or more
    • Larger than 2 $\times$ 2 tables: average of the expected cell counts is 5 or more, smallest expected cell count is 1 or more
  • There are $I$ independent simple random samples from each of $I$ populations defined by the independent variable, or there is one simple random sample from the total population
Test statisticTest statistic
$W = $ number of difference scores that is larger than 0$X^2 = \sum{\frac{(\mbox{observed cell count} - \mbox{expected cell count})^2}{\mbox{expected cell count}}}$
where for each cell, the expected cell count = $\dfrac{\mbox{row total} \times \mbox{column total}}{\mbox{total sample size}}$, the observed cell count is the observed sample count in that same cell, and the sum is over all $I \times J$ cells
Sampling distribution of $W$ if H0 were trueSampling distribution of $X^2$ if H0 were true
The exact distribution of $W$ under the null hypothesis is the Binomial($n$, $p$) distribution, with $n =$ number of positive differences $+$ number of negative differences, and $p = 0.5$.

If $n$ is large, $W$ is approximately normally distributed under the null hypothesis, with mean $np = n \times 0.5$ and standard deviation $\sqrt{np(1-p)} = \sqrt{n \times 0.5(1 - 0.5)}$. Hence, if $n$ is large, the standardized test statistic $$z = \frac{W - n \times 0.5}{\sqrt{n \times 0.5(1 - 0.5)}}$$ follows approximately a standard normal distribution if the null hypothesis were true.
Approximately a chi-squared distribution with $(I - 1) \times (J - 1)$ degrees of freedom
Significant?Significant?
If $n$ is small, the table for the binomial distribution should be used:
Two sided:
  • Check if $W$ observed in sample is in the rejection region or
  • Find two sided $p$ value corresponding to observed $W$ and check if it is equal to or smaller than $\alpha$
Right sided:
  • Check if $W$ observed in sample is in the rejection region or
  • Find right sided $p$ value corresponding to observed $W$ and check if it is equal to or smaller than $\alpha$
Left sided:
  • Check if $W$ observed in sample is in the rejection region or
  • Find left sided $p$ value corresponding to observed $W$ and check if it is equal to or smaller than $\alpha$

If $n$ is large, the table for standard normal probabilities can be used:
Two sided: Right sided: Left sided:
  • Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
  • Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
Equivalent ton.a.
Two sided sign test is equivalent to -
Example contextExample context
Do people tend to score higher on mental health after a mindfulness course?Is there an association between economic class and gender? Is the distribution of economic class different between men and women?
SPSSSPSS
Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
  • Put the two paired variables in the boxes below Variable 1 and Variable 2
  • Under Test Type, select the Sign test
Analyze > Descriptive Statistics > Crosstabs...
  • Put one of your two categorical variables in the box below Row(s), and the other categorical variable in the box below Column(s)
  • Click the Statistics... button, and click on the square in front of Chi-square
  • Continue and click OK
JamoviJamovi
Jamovi does not have a specific option for the sign test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the two sided $p$ value that would have resulted from the sign test. Go to:

ANOVA > Repeated Measures ANOVA - Friedman
  • Put the two paired variables in the box below Measures
Frequencies > Independent Samples - $\chi^2$ test of association
  • Put one of your two categorical variables in the box below Rows, and the other categorical variable in the box below Columns
Practice questionsPractice questions