Wilcoxon signedrank test  overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons (max. of 3) by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
Wilcoxon signedrank test  Friedman test 


Independent variable  Independent/grouping variable  
2 paired groups  One within subject factor ($\geq 2$ related groups)  
Dependent variable  Dependent variable  
One quantitative of interval or ratio level  One of ordinal level  
Null hypothesis  Null hypothesis  
H_{0}: $m = 0$
Here $m$ is the population median of the difference scores. A difference score is the difference between the first score of a pair and the second score of a pair. Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher.  H_{0}: the population scores in any of the related groups are not systematically higher or lower than the population scores in any of the other related groups
Usually the related groups are the different measurement points. Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher.  
Alternative hypothesis  Alternative hypothesis  
H_{1} two sided: $m \neq 0$ H_{1} right sided: $m > 0$ H_{1} left sided: $m < 0$  H_{1}: the population scores in some of the related groups are systematically higher or lower than the population scores in other related groups  
Assumptions  Assumptions  

 
Test statistic  Test statistic  
Two different types of test statistics can be used, but both will result in the same test outcome. We will denote the first option the $W_1$ statistic (also known as the $T$ statistic), and the second option the $W_2$ statistic.
In order to compute each of the test statistics, follow the steps below:
 $Q = \dfrac{12}{N \times k(k + 1)} \sum R^2_i  3 \times N(k + 1)$
Here $N$ is the number of 'blocks' (usually the subjects  so if you have 4 repeated measurements for 60 subjects, $N$ equals 60), $k$ is the number of related groups (usually the number of repeated measurements), and $R_i$ is the sum of ranks in group $i$. Remember that multiplication precedes addition, so first compute $\frac{12}{N \times k(k + 1)} \times \sum R^2_i$ and then subtract $3 \times N(k + 1)$. Note: if ties are present in the data, the formula for $Q$ is more complicated.  
Sampling distribution of $W_1$ and of $W_2$ if H_{0} were true  Sampling distribution of $Q$ if H_{0} were true  
Sampling distribution of $W_1$:
If $N_r$ is large, $W_1$ is approximately normally distributed with mean $\mu_{W_1}$ and standard deviation $\sigma_{W_1}$ if the null hypothesis were true. Here $$\mu_{W_1} = \frac{N_r(N_r + 1)}{4}$$ $$\sigma_{W_1} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{24}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_1  \mu_{W_1}}{\sigma_{W_1}}$$ follows approximately the standard normal distribution if the null hypothesis were true. Sampling distribution of $W_2$: If $N_r$ is large, $W_2$ is approximately normally distributed with mean $0$ and standard deviation $\sigma_{W_2}$ if the null hypothesis were true. Here $$\sigma_{W_2} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{6}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_2}{\sigma_{W_2}}$$ follows approximately the standard normal distribution if the null hypothesis were true. If $N_r$ is small, the exact distribution of $W_1$ or $W_2$ should be used. Note: if ties are present in the data, the formula for the standard deviations $\sigma_{W_1}$ and $\sigma_{W_2}$ is more complicated.  If the number of blocks $N$ is large, approximately the chisquared distribution with $k  1$ degrees of freedom.
For small samples, the exact distribution of $Q$ should be used.  
Significant?  Significant?  
For large samples, the table for standard normal probabilities can be used: Two sided:
 If the number of blocks $N$ is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
 
Example context  Example context  
Is the median of the differences between the mental health scores before and after an intervention different from 0?  Is there a difference in depression level between measurement point 1 (preintervention), measurement point 2 (1 week postintervention), and measurement point 3 (6 weeks postintervention)?  
SPSS  SPSS  
Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
 Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
 
Jamovi  Jamovi  
TTests > Paired Samples TTest
 ANOVA > Repeated Measures ANOVA  Friedman
 
Practice questions  Practice questions  