Wilcoxon signed-rank test - overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table
Wilcoxon signed-rank test | Friedman test | Marginal Homogeneity test / Stuart-Maxwell test |
|
---|---|---|---|
Independent variable | Independent/grouping variable | Independent variable | |
2 paired groups | One within subject factor ($\geq 2$ related groups) | 2 paired groups | |
Dependent variable | Dependent variable | Dependent variable | |
One quantitative of interval or ratio level | One of ordinal level | One categorical with $J$ independent groups ($J \geqslant 2$) | |
Null hypothesis | Null hypothesis | Null hypothesis | |
H0: $m = 0$
Here $m$ is the population median of the difference scores. A difference score is the difference between the first score of a pair and the second score of a pair. Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher. | H0: the population scores in any of the related groups are not systematically higher or lower than the population scores in any of the other related groups
Usually the related groups are the different measurement points. Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher. | H0: for each category $j$ of the dependent variable, $\pi_j$ for the first paired group = $\pi_j$ for the second paired group.
Here $\pi_j$ is the population proportion in category $j.$ | |
Alternative hypothesis | Alternative hypothesis | Alternative hypothesis | |
H1 two sided: $m \neq 0$ H1 right sided: $m > 0$ H1 left sided: $m < 0$ | H1: the population scores in some of the related groups are systematically higher or lower than the population scores in other related groups | H1: for some categories of the dependent variable, $\pi_j$ for the first paired group $\neq$ $\pi_j$ for the second paired group. | |
Assumptions | Assumptions | Assumptions | |
|
|
| |
Test statistic | Test statistic | Test statistic | |
Two different types of test statistics can be used, but both will result in the same test outcome. We will denote the first option the $W_1$ statistic (also known as the $T$ statistic), and the second option the $W_2$ statistic.
In order to compute each of the test statistics, follow the steps below:
| $Q = \dfrac{12}{N \times k(k + 1)} \sum R^2_i - 3 \times N(k + 1)$
Here $N$ is the number of 'blocks' (usually the subjects - so if you have 4 repeated measurements for 60 subjects, $N$ equals 60), $k$ is the number of related groups (usually the number of repeated measurements), and $R_i$ is the sum of ranks in group $i$. Remember that multiplication precedes addition, so first compute $\frac{12}{N \times k(k + 1)} \times \sum R^2_i$ and then subtract $3 \times N(k + 1)$. Note: if ties are present in the data, the formula for $Q$ is more complicated. | Computing the test statistic is a bit complicated and involves matrix algebra. Unless you are following a technical course, you probably won't need to calculate it by hand. | |
Sampling distribution of $W_1$ and of $W_2$ if H0 were true | Sampling distribution of $Q$ if H0 were true | Sampling distribution of the test statistic if H0 were true | |
Sampling distribution of $W_1$:
If $N_r$ is large, $W_1$ is approximately normally distributed with mean $\mu_{W_1}$ and standard deviation $\sigma_{W_1}$ if the null hypothesis were true. Here $$\mu_{W_1} = \frac{N_r(N_r + 1)}{4}$$ $$\sigma_{W_1} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{24}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_1 - \mu_{W_1}}{\sigma_{W_1}}$$ follows approximately the standard normal distribution if the null hypothesis were true. Sampling distribution of $W_2$: If $N_r$ is large, $W_2$ is approximately normally distributed with mean $0$ and standard deviation $\sigma_{W_2}$ if the null hypothesis were true. Here $$\sigma_{W_2} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{6}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_2}{\sigma_{W_2}}$$ follows approximately the standard normal distribution if the null hypothesis were true. If $N_r$ is small, the exact distribution of $W_1$ or $W_2$ should be used. Note: if ties are present in the data, the formula for the standard deviations $\sigma_{W_1}$ and $\sigma_{W_2}$ is more complicated. | If the number of blocks $N$ is large, approximately the chi-squared distribution with $k - 1$ degrees of freedom.
For small samples, the exact distribution of $Q$ should be used. | Approximately the chi-squared distribution with $J - 1$ degrees of freedom | |
Significant? | Significant? | Significant? | |
For large samples, the table for standard normal probabilities can be used: Two sided:
| If the number of blocks $N$ is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
| If we denote the test statistic as $X^2$:
| |
Example context | Example context | Example context | |
Is the median of the differences between the mental health scores before and after an intervention different from 0? | Is there a difference in depression level between measurement point 1 (pre-intervention), measurement point 2 (1 week post-intervention), and measurement point 3 (6 weeks post-intervention)? | Subjects are asked to taste three different types of mayonnaise, and to indicate which of the three types of mayonnaise they like best. They then have to drink a glass of beer, and taste and rate the three types of mayonnaise again. Does drinking a beer change which type of mayonnaise people like best? | |
SPSS | SPSS | SPSS | |
Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
| Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
| Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
| |
Jamovi | Jamovi | n.a. | |
T-Tests > Paired Samples T-Test
| ANOVA > Repeated Measures ANOVA - Friedman
| - | |
Practice questions | Practice questions | Practice questions | |