Wilcoxon signed-rank test - overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table
Wilcoxon signed-rank test | McNemar's test |
|
---|---|---|
Independent variable | Independent variable | |
2 paired groups | 2 paired groups | |
Dependent variable | Dependent variable | |
One quantitative of interval or ratio level | One categorical with 2 independent groups | |
Null hypothesis | Null hypothesis | |
H0: $m = 0$
Here $m$ is the population median of the difference scores. A difference score is the difference between the first score of a pair and the second score of a pair. Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher. | Let's say that the scores on the dependent variable are scored 0 and 1. Then for each pair of scores, the data allow four options:
Other formulations of the null hypothesis are:
| |
Alternative hypothesis | Alternative hypothesis | |
H1 two sided: $m \neq 0$ H1 right sided: $m > 0$ H1 left sided: $m < 0$ | The alternative hypothesis H1 is that for each pair of scores, P(first score of pair is 0 while second score of pair is 1) $\neq$ P(first score of pair is 1 while second score of pair is 0). That is, the probability that a pair of scores switches from 0 to 1 is not the same as the probability that a pair of scores switches from 1 to 0. Other formulations of the alternative hypothesis are:
| |
Assumptions | Assumptions | |
|
| |
Test statistic | Test statistic | |
Two different types of test statistics can be used, but both will result in the same test outcome. We will denote the first option the $W_1$ statistic (also known as the $T$ statistic), and the second option the $W_2$ statistic.
In order to compute each of the test statistics, follow the steps below:
| $X^2 = \dfrac{(b - c)^2}{b + c}$
Here $b$ is the number of pairs in the sample for which the first score is 0 while the second score is 1, and $c$ is the number of pairs in the sample for which the first score is 1 while the second score is 0. | |
Sampling distribution of $W_1$ and of $W_2$ if H0 were true | Sampling distribution of $X^2$ if H0 were true | |
Sampling distribution of $W_1$:
If $N_r$ is large, $W_1$ is approximately normally distributed with mean $\mu_{W_1}$ and standard deviation $\sigma_{W_1}$ if the null hypothesis were true. Here $$\mu_{W_1} = \frac{N_r(N_r + 1)}{4}$$ $$\sigma_{W_1} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{24}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_1 - \mu_{W_1}}{\sigma_{W_1}}$$ follows approximately the standard normal distribution if the null hypothesis were true. Sampling distribution of $W_2$: If $N_r$ is large, $W_2$ is approximately normally distributed with mean $0$ and standard deviation $\sigma_{W_2}$ if the null hypothesis were true. Here $$\sigma_{W_2} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{6}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_2}{\sigma_{W_2}}$$ follows approximately the standard normal distribution if the null hypothesis were true. If $N_r$ is small, the exact distribution of $W_1$ or $W_2$ should be used. Note: if ties are present in the data, the formula for the standard deviations $\sigma_{W_1}$ and $\sigma_{W_2}$ is more complicated. | If $b + c$ is large enough (say, > 20), approximately the chi-squared distribution with 1 degree of freedom. If $b + c$ is small, the Binomial($n$, $P$) distribution should be used, with $n = b + c$ and $P = 0.5$. In that case the test statistic becomes equal to $b$. | |
Significant? | Significant? | |
For large samples, the table for standard normal probabilities can be used: Two sided:
| For test statistic $X^2$:
| |
n.a. | Equivalent to | |
- |
| |
Example context | Example context | |
Is the median of the differences between the mental health scores before and after an intervention different from 0? | Does a tv documentary about spiders change whether people are afraid (yes/no) of spiders? | |
SPSS | SPSS | |
Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
| Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
| |
Jamovi | Jamovi | |
T-Tests > Paired Samples T-Test
| Frequencies > Paired Samples - McNemar test
| |
Practice questions | Practice questions | |