Wilcoxon signed-rank test - overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table
Wilcoxon signed-rank test | One sample Wilcoxon signed-rank test |
|
---|---|---|
Independent variable | Independent variable | |
2 paired groups | None | |
Dependent variable | Dependent variable | |
One quantitative of interval or ratio level | One of ordinal level | |
Null hypothesis | Null hypothesis | |
H0: $m = 0$
Here $m$ is the population median of the difference scores. A difference score is the difference between the first score of a pair and the second score of a pair. Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher. | H0: $m = m_0$
Here $m$ is the population median, and $m_0$ is the population median according to the null hypothesis. | |
Alternative hypothesis | Alternative hypothesis | |
H1 two sided: $m \neq 0$ H1 right sided: $m > 0$ H1 left sided: $m < 0$ | H1 two sided: $m \neq m_0$ H1 right sided: $m > m_0$ H1 left sided: $m < m_0$ | |
Assumptions | Assumptions | |
|
| |
Test statistic | Test statistic | |
Two different types of test statistics can be used, but both will result in the same test outcome. We will denote the first option the $W_1$ statistic (also known as the $T$ statistic), and the second option the $W_2$ statistic.
In order to compute each of the test statistics, follow the steps below:
| Two different types of test statistics can be used, but both will result in the same test outcome. We will denote the first option the $W_1$ statistic (also known as the $T$ statistic), and the second option the $W_2$ statistic.
In order to compute each of the test statistics, follow the steps below:
| |
Sampling distribution of $W_1$ and of $W_2$ if H0 were true | Sampling distribution of $W_1$ and of $W_2$ if H0 were true | |
Sampling distribution of $W_1$:
If $N_r$ is large, $W_1$ is approximately normally distributed with mean $\mu_{W_1}$ and standard deviation $\sigma_{W_1}$ if the null hypothesis were true. Here $$\mu_{W_1} = \frac{N_r(N_r + 1)}{4}$$ $$\sigma_{W_1} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{24}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_1 - \mu_{W_1}}{\sigma_{W_1}}$$ follows approximately the standard normal distribution if the null hypothesis were true. Sampling distribution of $W_2$: If $N_r$ is large, $W_2$ is approximately normally distributed with mean $0$ and standard deviation $\sigma_{W_2}$ if the null hypothesis were true. Here $$\sigma_{W_2} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{6}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_2}{\sigma_{W_2}}$$ follows approximately the standard normal distribution if the null hypothesis were true. If $N_r$ is small, the exact distribution of $W_1$ or $W_2$ should be used. Note: if ties are present in the data, the formula for the standard deviations $\sigma_{W_1}$ and $\sigma_{W_2}$ is more complicated. | Sampling distribution of $W_1$:
If $N_r$ is large, $W_1$ is approximately normally distributed with mean $\mu_{W_1}$ and standard deviation $\sigma_{W_1}$ if the null hypothesis were true. Here $$\mu_{W_1} = \frac{N_r(N_r + 1)}{4}$$ $$\sigma_{W_1} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{24}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_1 - \mu_{W_1}}{\sigma_{W_1}}$$ follows approximately the standard normal distribution if the null hypothesis were true. Sampling distribution of $W_2$: If $N_r$ is large, $W_2$ is approximately normally distributed with mean $0$ and standard deviation $\sigma_{W_2}$ if the null hypothesis were true. Here $$\sigma_{W_2} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{6}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_2}{\sigma_{W_2}}$$ follows approximately the standard normal distribution if the null hypothesis were true. If $N_r$ is small, the exact distribution of $W_1$ or $W_2$ should be used. Note: if ties are present in the data, the formula for the standard deviations $\sigma_{W_1}$ and $\sigma_{W_2}$ is more complicated. | |
Significant? | Significant? | |
For large samples, the table for standard normal probabilities can be used: Two sided:
| For large samples, the table for standard normal probabilities can be used: Two sided:
| |
Example context | Example context | |
Is the median of the differences between the mental health scores before and after an intervention different from 0? | Is the median mental health score of office workers different from $m_0 = 50$? | |
SPSS | SPSS | |
Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
| Specify the measurement level of your variable on the Variable View tab, in the column named Measure. Then go to:
Analyze > Nonparametric Tests > One Sample...
| |
Jamovi | Jamovi | |
T-Tests > Paired Samples T-Test
| T-Tests > One Sample T-Test
| |
Practice questions | Practice questions | |