Chi-squared test for the relationship between two categorical variables - overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table
Chi-squared test for the relationship between two categorical variables | One sample Wilcoxon signed-rank test | $z$ test for a single proportion |
|
---|---|---|---|
Independent /column variable | Independent variable | Independent variable | |
One categorical with $I$ independent groups ($I \geqslant 2$) | None | None | |
Dependent /row variable | Dependent variable | Dependent variable | |
One categorical with $J$ independent groups ($J \geqslant 2$) | One of ordinal level | One categorical with 2 independent groups | |
Null hypothesis | Null hypothesis | Null hypothesis | |
H0: there is no association between the row and column variable More precisely, if there are $I$ independent random samples of size $n_i$ from each of $I$ populations, defined by the independent variable:
| H0: $m = m_0$
Here $m$ is the population median, and $m_0$ is the population median according to the null hypothesis. | H0: $\pi = \pi_0$
Here $\pi$ is the population proportion of 'successes', and $\pi_0$ is the population proportion of successes according to the null hypothesis. | |
Alternative hypothesis | Alternative hypothesis | Alternative hypothesis | |
H1: there is an association between the row and column variable More precisely, if there are $I$ independent random samples of size $n_i$ from each of $I$ populations, defined by the independent variable:
| H1 two sided: $m \neq m_0$ H1 right sided: $m > m_0$ H1 left sided: $m < m_0$ | H1 two sided: $\pi \neq \pi_0$ H1 right sided: $\pi > \pi_0$ H1 left sided: $\pi < \pi_0$ | |
Assumptions | Assumptions | Assumptions | |
|
|
| |
Test statistic | Test statistic | Test statistic | |
$X^2 = \sum{\frac{(\mbox{observed cell count} - \mbox{expected cell count})^2}{\mbox{expected cell count}}}$
Here for each cell, the expected cell count = $\dfrac{\mbox{row total} \times \mbox{column total}}{\mbox{total sample size}}$, the observed cell count is the observed sample count in that same cell, and the sum is over all $I \times J$ cells. | Two different types of test statistics can be used, but both will result in the same test outcome. We will denote the first option the $W_1$ statistic (also known as the $T$ statistic), and the second option the $W_2$ statistic.
In order to compute each of the test statistics, follow the steps below:
| $z = \dfrac{p - \pi_0}{\sqrt{\dfrac{\pi_0(1 - \pi_0)}{N}}}$
Here $p$ is the sample proportion of successes: $\dfrac{X}{N}$, $N$ is the sample size, and $\pi_0$ is the population proportion of successes according to the null hypothesis. | |
Sampling distribution of $X^2$ if H0 were true | Sampling distribution of $W_1$ and of $W_2$ if H0 were true | Sampling distribution of $z$ if H0 were true | |
Approximately the chi-squared distribution with $(I - 1) \times (J - 1)$ degrees of freedom | Sampling distribution of $W_1$:
If $N_r$ is large, $W_1$ is approximately normally distributed with mean $\mu_{W_1}$ and standard deviation $\sigma_{W_1}$ if the null hypothesis were true. Here $$\mu_{W_1} = \frac{N_r(N_r + 1)}{4}$$ $$\sigma_{W_1} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{24}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_1 - \mu_{W_1}}{\sigma_{W_1}}$$ follows approximately the standard normal distribution if the null hypothesis were true. Sampling distribution of $W_2$: If $N_r$ is large, $W_2$ is approximately normally distributed with mean $0$ and standard deviation $\sigma_{W_2}$ if the null hypothesis were true. Here $$\sigma_{W_2} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{6}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_2}{\sigma_{W_2}}$$ follows approximately the standard normal distribution if the null hypothesis were true. If $N_r$ is small, the exact distribution of $W_1$ or $W_2$ should be used. Note: if ties are present in the data, the formula for the standard deviations $\sigma_{W_1}$ and $\sigma_{W_2}$ is more complicated. | Approximately the standard normal distribution | |
Significant? | Significant? | Significant? | |
| For large samples, the table for standard normal probabilities can be used: Two sided:
| Two sided:
| |
n.a. | n.a. | Approximate $C\%$ confidence interval for $\pi$ | |
- | - | Regular (large sample):
| |
n.a. | n.a. | Equivalent to | |
- | - |
| |
Example context | Example context | Example context | |
Is there an association between economic class and gender? Is the distribution of economic class different between men and women? | Is the median mental health score of office workers different from $m_0 = 50$? | Is the proportion of smokers amongst office workers different from $\pi_0 = 0.2$? Use the normal approximation for the sampling distribution of the test statistic. | |
SPSS | SPSS | SPSS | |
Analyze > Descriptive Statistics > Crosstabs...
| Specify the measurement level of your variable on the Variable View tab, in the column named Measure. Then go to:
Analyze > Nonparametric Tests > One Sample...
| Analyze > Nonparametric Tests > Legacy Dialogs > Binomial...
| |
Jamovi | Jamovi | Jamovi | |
Frequencies > Independent Samples - $\chi^2$ test of association
| T-Tests > One Sample T-Test
| Frequencies > 2 Outcomes - Binomial test
| |
Practice questions | Practice questions | Practice questions | |