This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
One within subject factor ($\geq 2$ related groups)
One categorical with 2 independent groups
Two categorical, the first with $I$ independent groups and the second with $J$ independent groups ($I \geqslant 2$, $J \geqslant 2$)
Dependent variable
Dependent variable
Dependent variable
One categorical with 2 independent groups
One of ordinal level
One quantitative of interval or ratio level
Null hypothesis
Null hypothesis
Null hypothesis
H_{0}: $\pi_1 = \pi_2 = \ldots = \pi_I$
Here $\pi_1$ is the population proportion of 'successes' for group 1, $\pi_2$ is the population proportion of 'successes' for group 2, and $\pi_I$ is the population proportion of 'successes' for group $I.$
If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in both populations:
H_{0}: the population median for group 1 is equal to the population median for group 2
Else:
Formulation 1:
H_{0}: the population scores in group 1 are not systematically higher or lower than the population scores in group 2
Formulation 2:
H_{0}:
P(an observation from population 1 exceeds an observation from population 2) = P(an observation from population 2 exceeds observation from population 1)
Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher.
ANOVA $F$ tests:
H_{0} for main and interaction effects together (model): no main effects and interaction effect
H_{0} for independent variable A: no main effect for A
H_{0} for independent variable B: no main effect for B
H_{0} for the interaction term: no interaction effect between A and B
Like in one way ANOVA, we can also perform $t$ tests for specific contrasts and multiple comparisons. This is more advanced stuff.
Alternative hypothesis
Alternative hypothesis
Alternative hypothesis
H_{1}: not all population proportions are equal
If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in both populations:
H_{1} two sided: the population median for group 1 is not equal to the population median for group 2
H_{1} right sided: the population median for group 1 is larger than the population median for group 2
H_{1} left sided: the population median for group 1 is smaller than the population median for group 2
Else:
Formulation 1:
H_{1} two sided: the population scores in group 1 are systematically higher or lower than the population scores in group 2
H_{1} right sided: the population scores in group 1 are systematically higher than the population scores in group 2
H_{1} left sided: the population scores in group 1 are systematically lower than the population scores in group 2
Formulation 2:
H_{1} two sided: P(an observation from population 1 exceeds an observation from population 2) $\neq$ P(an observation from population 2 exceeds an observation from population 1)
H_{1} right sided: P(an observation from population 1 exceeds an observation from population 2) > P(an observation from population 2 exceeds an observation from population 1)
H_{1} left sided: P(an observation from population 1 exceeds an observation from population 2) < P(an observation from population 2 exceeds an observation from population 1)
ANOVA $F$ tests:
H_{1} for main and interaction effects together (model): there is a main effect for A, and/or for B, and/or an interaction effect
H_{1} for independent variable A: there is a main effect for A
H_{1} for independent variable B: there is a main effect for B
H_{1} for the interaction term: there is an interaction effect between A and B
Assumptions
Assumptions
Assumptions
Sample of 'blocks' (usually the subjects) is a simple random sample from the population. That is, blocks are independent of one another
Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2. That is, within and between groups, observations are independent of one another
Within each of the $I \times J$ populations, the scores on the dependent variable are normally distributed
The standard deviation of the scores on the dependent variable is the same in each of the $I \times J$ populations
For each of the $I \times J$ groups, the sample is an independent and simple random sample from the population defined by that group. That is, within and between groups, observations are independent of one another
Equal sample sizes for each group make the interpretation of the ANOVA output easier (unequal sample sizes result in overlap in the sum of squares; this is advanced stuff)
Test statistic
Test statistic
Test statistic
If a failure is scored as 0 and a success is scored as 1:
Here $k$ is the number of related groups (usually the number of repeated measurements), a group total is the sum of the scores in a group, a block total is the sum of the scores in a block (usually a subject), and the grand total is the sum of all the scores.
Before computing $Q$, first exclude blocks with equal scores in all $k$ groups.
Two different types of test statistics can be used; both will result in the same test outcome. The first is the Wilcoxon rank sum statistic $W$:
The second type of test statistic is the MannWhitney $U$ statistic:
$U = W  \dfrac{n_1(n_1 + 1)}{2}$
where $n_1$ is the sample size of group 1.
Note: we could just as well base W and U on group 2. This would only 'flip' the right and left sided alternative hypotheses. Also, tables with critical values for $U$ are often based on the smaller of $U$ for group 1 and for group 2.
For main and interaction effects together (model):
Note: mean square error is also known as mean square residual or mean square within.
n.a.
n.a.
Pooled standard deviation


$
\begin{aligned}
s_p &= \sqrt{\dfrac{\sum\nolimits_{subjects} (\mbox{subject's score}  \mbox{its group mean})^2}{N  (I \times J)}}\\
&= \sqrt{\dfrac{\mbox{sum of squares error}}{\mbox{degrees of freedom error}}}\\
&= \sqrt{\mbox{mean square error}}
\end{aligned}
$
Sampling distribution of $Q$ if H_{0} were true
Sampling distribution of $W$ and of $U$ if H_{0} were true
Sampling distribution of $F$ if H_{0} were true
If the number of blocks (usually the number of subjects) is large, approximately the chisquared distribution with $k  1$ degrees of freedom
Sampling distribution of $W$:
For large samples, $W$ is approximately normally distributed with mean $\mu_W$ and standard deviation $\sigma_W$ if the null hypothesis were true. Here
$$
\begin{aligned}
\mu_W &= \dfrac{n_1(n_1 + n_2 + 1)}{2}\\
\sigma_W &= \sqrt{\dfrac{n_1 n_2(n_1 + n_2 + 1)}{12}}
\end{aligned}
$$
Hence, for large samples, the standardized test statistic
$$
z_W = \dfrac{W  \mu_W}{\sigma_W}\\
$$
follows approximately the standard normal distribution if the null hypothesis were true. Note that if your $W$ value is based on group 2, $\mu_W$ becomes $\frac{n_2(n_1 + n_2 + 1)}{2}$.
Sampling distribution of $U$:
For large samples, $U$ is approximately normally distributed with mean $\mu_U$ and standard deviation $\sigma_U$ if the null hypothesis were true. Here
$$
\begin{aligned}
\mu_U &= \dfrac{n_1 n_2}{2}\\
\sigma_U &= \sqrt{\dfrac{n_1 n_2(n_1 + n_2 + 1)}{12}}
\end{aligned}
$$
Hence, for large samples, the standardized test statistic
$$
z_U = \dfrac{U  \mu_U}{\sigma_U}\\
$$
follows approximately the standard normal distribution if the null hypothesis were true.
For small samples, the exact distribution of $W$ or $U$ should be used.
Note: if ties are present in the data, the formula for the standard deviations $\sigma_W$ and $\sigma_U$ is more complicated.
For main and interaction effects together (model):
$F$ distribution with $(I  1) + (J  1) + (I  1) \times (J  1)$ (df model, numerator) and $N  (I \times J)$ (df error, denominator) degrees of freedom
For independent variable A:
$F$ distribution with $I  1$ (df A, numerator) and $N  (I \times J)$ (df error, denominator) degrees of freedom
For independent variable B:
$F$ distribution with $J  1$ (df B, numerator) and $N  (I \times J)$ (df error, denominator) degrees of freedom
For the interaction term:
$F$ distribution with $(I  1) \times (J  1)$ (df interaction, numerator) and $N  (I \times J)$ (df error, denominator) degrees of freedom
Here $N$ is the total sample size.
Significant?
Significant?
Significant?
If the number of blocks is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
For large samples, the table for standard normal probabilities can be used:
Two sided:
Check if $z$ observed in sample is at least as extreme as critical value $z^*$ or
Find two sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
Right sided:
Check if $z$ observed in sample is equal to or larger than critical value $z^*$ or
Find right sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
Left sided:
Check if $z$ observed in sample is equal to or smaller than critical value $z^*$ or
Find left sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
Check if $F$ observed in sample is equal to or larger than critical value $F^*$ or
Find $p$ value corresponding to observed $F$ and check if it is equal to or smaller than $\alpha$
n.a.
n.a.
Effect size


Proportion variance explained $R^2$:
Proportion variance of the dependent variable $y$ explained by the independent variables and the interaction effect together:
$$
\begin{align}
R^2 &= \dfrac{\mbox{sum of squares model}}{\mbox{sum of squares total}}
\end{align}
$$
$R^2$ is the proportion variance explained in the sample. It is a positively biased estimate of the proportion variance explained in the population.
Proportion variance explained $\eta^2$:
Proportion variance of the dependent variable $y$ explained by an independent variable or interaction effect:
$$
\begin{align}
\eta^2_A &= \dfrac{\mbox{sum of squares A}}{\mbox{sum of squares total}}\\
\\
\eta^2_B &= \dfrac{\mbox{sum of squares B}}{\mbox{sum of squares total}}\\
\\
\eta^2_{int} &= \dfrac{\mbox{sum of squares int}}{\mbox{sum of squares total}}
\end{align}
$$
$\eta^2$ is the proportion variance explained in the sample. It is a positively biased estimate of the proportion variance explained in the population.
Proportion variance explained $\omega^2$:
Corrects for the positive bias in $\eta^2$ and is equal to:
$$
\begin{align}
\omega^2_A &= \dfrac{\mbox{sum of squares A}  \mbox{degrees of freedom A} \times \mbox{mean square error}}{\mbox{sum of squares total} + \mbox{mean square error}}\\
\\
\omega^2_B &= \dfrac{\mbox{sum of squares B}  \mbox{degrees of freedom B} \times \mbox{mean square error}}{\mbox{sum of squares total} + \mbox{mean square error}}\\
\\
\omega^2_{int} &= \dfrac{\mbox{sum of squares int}  \mbox{degrees of freedom int} \times \mbox{mean square error}}{\mbox{sum of squares total} + \mbox{mean square error}}\\
\end{align}
$$
$\omega^2$ is a better estimate of the explained variance in the population than
$\eta^2$. Only for balanced designs (equal sample sizes).
Proportion variance explained $\eta^2_{partial}$:
$$
\begin{align}
\eta^2_{partial\,A} &= \frac{\mbox{sum of squares A}}{\mbox{sum of squares A} + \mbox{sum of squares error}}\\
\\
\eta^2_{partial\,B} &= \frac{\mbox{sum of squares B}}{\mbox{sum of squares B} + \mbox{sum of squares error}}\\
\\
\eta^2_{partial\,int} &= \frac{\mbox{sum of squares int}}{\mbox{sum of squares int} + \mbox{sum of squares error}}
\end{align}
$$
n.a.
n.a.
ANOVA table


Equivalent to
Equivalent to
Equivalent to
Friedman test, with a categorical dependent variable consisting of two independent groups.
If there are no ties in the data, the two sided MannWhitneyWilcoxon test is equivalent to the KruskalWallis test with an independent variable with 2 levels ($I$ = 2).
OLS regression with two categorical independent variables and the interaction term, transformed into $(I  1)$ + $(J  1)$ + $(I  1) \times (J  1)$ code variables.
Example context
Example context
Example context
Subjects perform three different tasks, which they can either perform correctly or incorrectly. Is there a difference in task performance between the three different tasks?
Do men tend to score higher on social economic status than women?
Is the average mental health score different between people from a low, moderate, and high economic class? And is the average mental health score different between men and women? And is there an interaction effect between economic class and gender?
SPSS
SPSS
SPSS
Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
Put the $k$ variables containing the scores for the $k$ related groups in the white box below Test Variables
Put your dependent variable in the box below Test Variable List and your independent (grouping) variable in the box below Grouping Variable
Click on the Define Groups... button. If you can't click on it, first click on the grouping variable so its background turns yellow
Fill in the value you have used to indicate your first group in the box next to Group 1, and the value you have used to indicate your second group in the box next to Group 2
Continue and click OK
Analyze > General Linear Model > Univariate...
Put your dependent (quantitative) variable in the box below Dependent Variable and your two independent (grouping) variables in the box below Fixed Factor(s)
Jamovi
Jamovi
Jamovi
Jamovi does not have a specific option for the Cochran's Q test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the $p$ value that would have resulted from the Cochran's Q test. Go to:
ANOVA > Repeated Measures ANOVA  Friedman
Put the $k$ variables containing the scores for the $k$ related groups in the box below Measures
TTests > Independent Samples TTest
Put your dependent variable in the box below Dependent Variables and your independent (grouping) variable in the box below Grouping Variable
Under Tests, select MannWhitney U
Under Hypothesis, select your alternative hypothesis
ANOVA > ANOVA
Put your dependent (quantitative) variable in the box below Dependent Variable and your two independent (grouping) variables in the box below Fixed Factors