Cochran's Q test - overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table
Cochran's Q test | Friedman test | Cochran's Q test | McNemar's test |
|
---|---|---|---|---|
Independent/grouping variable | Independent/grouping variable | Independent/grouping variable | Independent variable | |
One within subject factor ($\geq 2$ related groups) | One within subject factor ($\geq 2$ related groups) | One within subject factor ($\geq 2$ related groups) | 2 paired groups | |
Dependent variable | Dependent variable | Dependent variable | Dependent variable | |
One categorical with 2 independent groups | One of ordinal level | One categorical with 2 independent groups | One categorical with 2 independent groups | |
Null hypothesis | Null hypothesis | Null hypothesis | Null hypothesis | |
H0: $\pi_1 = \pi_2 = \ldots = \pi_I$
Here $\pi_1$ is the population proportion of 'successes' for group 1, $\pi_2$ is the population proportion of 'successes' for group 2, and $\pi_I$ is the population proportion of 'successes' for group $I.$ | H0: the population scores in any of the related groups are not systematically higher or lower than the population scores in any of the other related groups
Usually the related groups are the different measurement points. Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher. | H0: $\pi_1 = \pi_2 = \ldots = \pi_I$
Here $\pi_1$ is the population proportion of 'successes' for group 1, $\pi_2$ is the population proportion of 'successes' for group 2, and $\pi_I$ is the population proportion of 'successes' for group $I.$ | Let's say that the scores on the dependent variable are scored 0 and 1. Then for each pair of scores, the data allow four options:
Other formulations of the null hypothesis are:
| |
Alternative hypothesis | Alternative hypothesis | Alternative hypothesis | Alternative hypothesis | |
H1: not all population proportions are equal | H1: the population scores in some of the related groups are systematically higher or lower than the population scores in other related groups | H1: not all population proportions are equal | The alternative hypothesis H1 is that for each pair of scores, P(first score of pair is 0 while second score of pair is 1) $\neq$ P(first score of pair is 1 while second score of pair is 0). That is, the probability that a pair of scores switches from 0 to 1 is not the same as the probability that a pair of scores switches from 1 to 0. Other formulations of the alternative hypothesis are:
| |
Assumptions | Assumptions | Assumptions | Assumptions | |
|
|
|
| |
Test statistic | Test statistic | Test statistic | Test statistic | |
If a failure is scored as 0 and a success is scored as 1:
$Q = k(k - 1) \dfrac{\sum_{groups} \Big (\mbox{group total} - \frac{\mbox{grand total}}{k} \Big)^2}{\sum_{blocks} \mbox{block total} \times (k - \mbox{block total})}$ Here $k$ is the number of related groups (usually the number of repeated measurements), a group total is the sum of the scores in a group, a block total is the sum of the scores in a block (usually a subject), and the grand total is the sum of all the scores. Before computing $Q$, first exclude blocks with equal scores in all $k$ groups. | $Q = \dfrac{12}{N \times k(k + 1)} \sum R^2_i - 3 \times N(k + 1)$
Here $N$ is the number of 'blocks' (usually the subjects - so if you have 4 repeated measurements for 60 subjects, $N$ equals 60), $k$ is the number of related groups (usually the number of repeated measurements), and $R_i$ is the sum of ranks in group $i$. Remember that multiplication precedes addition, so first compute $\frac{12}{N \times k(k + 1)} \times \sum R^2_i$ and then subtract $3 \times N(k + 1)$. Note: if ties are present in the data, the formula for $Q$ is more complicated. | If a failure is scored as 0 and a success is scored as 1:
$Q = k(k - 1) \dfrac{\sum_{groups} \Big (\mbox{group total} - \frac{\mbox{grand total}}{k} \Big)^2}{\sum_{blocks} \mbox{block total} \times (k - \mbox{block total})}$ Here $k$ is the number of related groups (usually the number of repeated measurements), a group total is the sum of the scores in a group, a block total is the sum of the scores in a block (usually a subject), and the grand total is the sum of all the scores. Before computing $Q$, first exclude blocks with equal scores in all $k$ groups. | $X^2 = \dfrac{(b - c)^2}{b + c}$
Here $b$ is the number of pairs in the sample for which the first score is 0 while the second score is 1, and $c$ is the number of pairs in the sample for which the first score is 1 while the second score is 0. | |
Sampling distribution of $Q$ if H0 were true | Sampling distribution of $Q$ if H0 were true | Sampling distribution of $Q$ if H0 were true | Sampling distribution of $X^2$ if H0 were true | |
If the number of blocks (usually the number of subjects) is large, approximately the chi-squared distribution with $k - 1$ degrees of freedom | If the number of blocks $N$ is large, approximately the chi-squared distribution with $k - 1$ degrees of freedom.
For small samples, the exact distribution of $Q$ should be used. | If the number of blocks (usually the number of subjects) is large, approximately the chi-squared distribution with $k - 1$ degrees of freedom | If $b + c$ is large enough (say, > 20), approximately the chi-squared distribution with 1 degree of freedom. If $b + c$ is small, the Binomial($n$, $P$) distribution should be used, with $n = b + c$ and $P = 0.5$. In that case the test statistic becomes equal to $b$. | |
Significant? | Significant? | Significant? | Significant? | |
If the number of blocks is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
| If the number of blocks $N$ is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
| If the number of blocks is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
| For test statistic $X^2$:
| |
Equivalent to | n.a. | Equivalent to | Equivalent to | |
Friedman test, with a categorical dependent variable consisting of two independent groups. | - | Friedman test, with a categorical dependent variable consisting of two independent groups. |
| |
Example context | Example context | Example context | Example context | |
Subjects perform three different tasks, which they can either perform correctly or incorrectly. Is there a difference in task performance between the three different tasks? | Is there a difference in depression level between measurement point 1 (pre-intervention), measurement point 2 (1 week post-intervention), and measurement point 3 (6 weeks post-intervention)? | Subjects perform three different tasks, which they can either perform correctly or incorrectly. Is there a difference in task performance between the three different tasks? | Does a tv documentary about spiders change whether people are afraid (yes/no) of spiders? | |
SPSS | SPSS | SPSS | SPSS | |
Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
| Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
| Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
| Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
| |
Jamovi | Jamovi | Jamovi | Jamovi | |
Jamovi does not have a specific option for the Cochran's Q test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the $p$ value that would have resulted from the Cochran's Q test. Go to:
ANOVA > Repeated Measures ANOVA - Friedman
| ANOVA > Repeated Measures ANOVA - Friedman
| Jamovi does not have a specific option for the Cochran's Q test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the $p$ value that would have resulted from the Cochran's Q test. Go to:
ANOVA > Repeated Measures ANOVA - Friedman
| Frequencies > Paired Samples - McNemar test
| |
Practice questions | Practice questions | Practice questions | Practice questions | |