Cochran's Q test  overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
Cochran's Q test  Friedman test  Cochran's Q test  Chisquared test for the relationship between two categorical variables 


Independent/grouping variable  Independent/grouping variable  Independent/grouping variable  Independent /column variable  
One within subject factor ($\geq 2$ related groups)  One within subject factor ($\geq 2$ related groups)  One within subject factor ($\geq 2$ related groups)  One categorical with $I$ independent groups ($I \geqslant 2$)  
Dependent variable  Dependent variable  Dependent variable  Dependent /row variable  
One categorical with 2 independent groups  One of ordinal level  One categorical with 2 independent groups  One categorical with $J$ independent groups ($J \geqslant 2$)  
Null hypothesis  Null hypothesis  Null hypothesis  Null hypothesis  
H_{0}: $\pi_1 = \pi_2 = \ldots = \pi_I$
Here $\pi_1$ is the population proportion of 'successes' for group 1, $\pi_2$ is the population proportion of 'successes' for group 2, and $\pi_I$ is the population proportion of 'successes' for group $I.$  H_{0}: the population scores in any of the related groups are not systematically higher or lower than the population scores in any of the other related groups
Usually the related groups are the different measurement points. Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher.  H_{0}: $\pi_1 = \pi_2 = \ldots = \pi_I$
Here $\pi_1$ is the population proportion of 'successes' for group 1, $\pi_2$ is the population proportion of 'successes' for group 2, and $\pi_I$ is the population proportion of 'successes' for group $I.$  H_{0}: there is no association between the row and column variable More precisely, if there are $I$ independent random samples of size $n_i$ from each of $I$ populations, defined by the independent variable:
 
Alternative hypothesis  Alternative hypothesis  Alternative hypothesis  Alternative hypothesis  
H_{1}: not all population proportions are equal  H_{1}: the population scores in some of the related groups are systematically higher or lower than the population scores in other related groups  H_{1}: not all population proportions are equal  H_{1}: there is an association between the row and column variable More precisely, if there are $I$ independent random samples of size $n_i$ from each of $I$ populations, defined by the independent variable:
 
Assumptions  Assumptions  Assumptions  Assumptions  



 
Test statistic  Test statistic  Test statistic  Test statistic  
If a failure is scored as 0 and a success is scored as 1:
$Q = k(k  1) \dfrac{\sum_{groups} \Big (\mbox{group total}  \frac{\mbox{grand total}}{k} \Big)^2}{\sum_{blocks} \mbox{block total} \times (k  \mbox{block total})}$ Here $k$ is the number of related groups (usually the number of repeated measurements), a group total is the sum of the scores in a group, a block total is the sum of the scores in a block (usually a subject), and the grand total is the sum of all the scores. Before computing $Q$, first exclude blocks with equal scores in all $k$ groups.  $Q = \dfrac{12}{N \times k(k + 1)} \sum R^2_i  3 \times N(k + 1)$
Here $N$ is the number of 'blocks' (usually the subjects  so if you have 4 repeated measurements for 60 subjects, $N$ equals 60), $k$ is the number of related groups (usually the number of repeated measurements), and $R_i$ is the sum of ranks in group $i$. Remember that multiplication precedes addition, so first compute $\frac{12}{N \times k(k + 1)} \times \sum R^2_i$ and then subtract $3 \times N(k + 1)$. Note: if ties are present in the data, the formula for $Q$ is more complicated.  If a failure is scored as 0 and a success is scored as 1:
$Q = k(k  1) \dfrac{\sum_{groups} \Big (\mbox{group total}  \frac{\mbox{grand total}}{k} \Big)^2}{\sum_{blocks} \mbox{block total} \times (k  \mbox{block total})}$ Here $k$ is the number of related groups (usually the number of repeated measurements), a group total is the sum of the scores in a group, a block total is the sum of the scores in a block (usually a subject), and the grand total is the sum of all the scores. Before computing $Q$, first exclude blocks with equal scores in all $k$ groups.  $X^2 = \sum{\frac{(\mbox{observed cell count}  \mbox{expected cell count})^2}{\mbox{expected cell count}}}$
Here for each cell, the expected cell count = $\dfrac{\mbox{row total} \times \mbox{column total}}{\mbox{total sample size}}$, the observed cell count is the observed sample count in that same cell, and the sum is over all $I \times J$ cells.  
Sampling distribution of $Q$ if H_{0} were true  Sampling distribution of $Q$ if H_{0} were true  Sampling distribution of $Q$ if H_{0} were true  Sampling distribution of $X^2$ if H_{0} were true  
If the number of blocks (usually the number of subjects) is large, approximately the chisquared distribution with $k  1$ degrees of freedom  If the number of blocks $N$ is large, approximately the chisquared distribution with $k  1$ degrees of freedom.
For small samples, the exact distribution of $Q$ should be used.  If the number of blocks (usually the number of subjects) is large, approximately the chisquared distribution with $k  1$ degrees of freedom  Approximately the chisquared distribution with $(I  1) \times (J  1)$ degrees of freedom  
Significant?  Significant?  Significant?  Significant?  
If the number of blocks is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
 If the number of blocks $N$ is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
 If the number of blocks is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:

 
Equivalent to  n.a.  Equivalent to  n.a.  
Friedman test, with a categorical dependent variable consisting of two independent groups.    Friedman test, with a categorical dependent variable consisting of two independent groups.    
Example context  Example context  Example context  Example context  
Subjects perform three different tasks, which they can either perform correctly or incorrectly. Is there a difference in task performance between the three different tasks?  Is there a difference in depression level between measurement point 1 (preintervention), measurement point 2 (1 week postintervention), and measurement point 3 (6 weeks postintervention)?  Subjects perform three different tasks, which they can either perform correctly or incorrectly. Is there a difference in task performance between the three different tasks?  Is there an association between economic class and gender? Is the distribution of economic class different between men and women?  
SPSS  SPSS  SPSS  SPSS  
Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
 Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
 Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
 Analyze > Descriptive Statistics > Crosstabs...
 
Jamovi  Jamovi  Jamovi  Jamovi  
Jamovi does not have a specific option for the Cochran's Q test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the $p$ value that would have resulted from the Cochran's Q test. Go to:
ANOVA > Repeated Measures ANOVA  Friedman
 ANOVA > Repeated Measures ANOVA  Friedman
 Jamovi does not have a specific option for the Cochran's Q test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the $p$ value that would have resulted from the Cochran's Q test. Go to:
ANOVA > Repeated Measures ANOVA  Friedman
 Frequencies > Independent Samples  $\chi^2$ test of association
 
Practice questions  Practice questions  Practice questions  Practice questions  