Cochran's Q test - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Cochran's Q test
One sample $z$ test for the mean
Spearman's rho
Independent/grouping variableIndependent variableVariable 1
One within subject factor ($\geq 2$ related groups)NoneOne of ordinal level
Dependent variableDependent variableVariable 2
One categorical with 2 independent groupsOne quantitative of interval or ratio levelOne of ordinal level
Null hypothesisNull hypothesisNull hypothesis
H0: $\pi_1 = \pi_2 = \ldots = \pi_I$

Here $\pi_1$ is the population proportion of 'successes' for group 1, $\pi_2$ is the population proportion of 'successes' for group 2, and $\pi_I$ is the population proportion of 'successes' for group $I.$
H0: $\mu = \mu_0$

Here $\mu$ is the population mean, and $\mu_0$ is the population mean according to the null hypothesis.
H0: $\rho_s = 0$

Here $\rho_s$ is the Spearman correlation in the population. The Spearman correlation is a measure for the strength and direction of the monotonic relationship between two variables of at least ordinal measurement level.

In words, the null hypothesis would be:

H0: there is no monotonic relationship between the two variables in the population.
Alternative hypothesisAlternative hypothesisAlternative hypothesis
H1: not all population proportions are equalH1 two sided: $\mu \neq \mu_0$
H1 right sided: $\mu > \mu_0$
H1 left sided: $\mu < \mu_0$
H1 two sided: $\rho_s \neq 0$
H1 right sided: $\rho_s > 0$
H1 left sided: $\rho_s < 0$
AssumptionsAssumptionsAssumptions
  • Sample of 'blocks' (usually the subjects) is a simple random sample from the population. That is, blocks are independent of one another
  • Scores are normally distributed in the population
  • Population standard deviation $\sigma$ is known
  • Sample is a simple random sample from the population. That is, observations are independent of one another
  • Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
Note: this assumption is only important for the significance test, not for the correlation coefficient itself. The correlation coefficient itself just measures the strength of the monotonic relationship between two variables.
Test statisticTest statisticTest statistic
If a failure is scored as 0 and a success is scored as 1:

$Q = k(k - 1) \dfrac{\sum_{groups} \Big (\mbox{group total} - \frac{\mbox{grand total}}{k} \Big)^2}{\sum_{blocks} \mbox{block total} \times (k - \mbox{block total})}$

Here $k$ is the number of related groups (usually the number of repeated measurements), a group total is the sum of the scores in a group, a block total is the sum of the scores in a block (usually a subject), and the grand total is the sum of all the scores.

Before computing $Q$, first exclude blocks with equal scores in all $k$ groups.
$z = \dfrac{\bar{y} - \mu_0}{\sigma / \sqrt{N}}$
Here $\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to the null hypothesis, $\sigma$ is the population standard deviation, and $N$ is the sample size.

The denominator $\sigma / \sqrt{N}$ is the standard deviation of the sampling distribution of $\bar{y}$. The $z$ value indicates how many of these standard deviations $\bar{y}$ is removed from $\mu_0$.
$t = \dfrac{r_s \times \sqrt{N - 2}}{\sqrt{1 - r_s^2}} $
Here $r_s$ is the sample Spearman correlation and $N$ is the sample size. The sample Spearman correlation $r_s$ is equal to the Pearson correlation applied to the rank scores.
Sampling distribution of $Q$ if H0 were trueSampling distribution of $z$ if H0 were trueSampling distribution of $t$ if H0 were true
If the number of blocks (usually the number of subjects) is large, approximately the chi-squared distribution with $k - 1$ degrees of freedomStandard normal distributionApproximately the $t$ distribution with $N - 2$ degrees of freedom
Significant?Significant?Significant?
If the number of blocks is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
  • Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
  • Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
Two sided: Right sided: Left sided: Two sided: Right sided: Left sided:
n.a.$C\%$ confidence interval for $\mu$n.a.
-$\bar{y} \pm z^* \times \dfrac{\sigma}{\sqrt{N}}$
where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval).

The confidence interval for $\mu$ can also be used as significance test.
-
n.a.Effect sizen.a.
-Cohen's $d$:
Standardized difference between the sample mean and $\mu_0$: $$d = \frac{\bar{y} - \mu_0}{\sigma}$$ Cohen's $d$ indicates how many standard deviations $\sigma$ the sample mean $\bar{y}$ is removed from $\mu_0.$
-
n.a.Visual representationn.a.
-
One sample z test
-
Equivalent ton.a.n.a.
Friedman test, with a categorical dependent variable consisting of two independent groups.--
Example contextExample contextExample context
Subjects perform three different tasks, which they can either perform correctly or incorrectly. Is there a difference in task performance between the three different tasks?Is the average mental health score of office workers different from $\mu_0 = 50$? Assume that the standard deviation of the mental health scores in the population is $\sigma = 3.$Is there a monotonic relationship between physical health and mental health?
SPSSn.a.SPSS
Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
  • Put the $k$ variables containing the scores for the $k$ related groups in the white box below Test Variables
  • Under Test Type, select Cochran's Q test
-Analyze > Correlate > Bivariate...
  • Put your two variables in the box below Variables
  • Under Correlation Coefficients, select Spearman
Jamovin.a.Jamovi
Jamovi does not have a specific option for the Cochran's Q test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the $p$ value that would have resulted from the Cochran's Q test. Go to:

ANOVA > Repeated Measures ANOVA - Friedman
  • Put the $k$ variables containing the scores for the $k$ related groups in the box below Measures
-Regression > Correlation Matrix
  • Put your two variables in the white box at the right
  • Under Correlation Coefficients, select Spearman
  • Under Hypothesis, select your alternative hypothesis
Practice questionsPractice questionsPractice questions