Cochran's Q test - overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table
Cochran's Q test | One sample $z$ test for the mean | $z$ test for the difference between two proportions | One sample $t$ test for the mean |
|
---|---|---|---|---|
Independent/grouping variable | Independent variable | Independent/grouping variable | Independent variable | |
One within subject factor ($\geq 2$ related groups) | None | One categorical with 2 independent groups | None | |
Dependent variable | Dependent variable | Dependent variable | Dependent variable | |
One categorical with 2 independent groups | One quantitative of interval or ratio level | One categorical with 2 independent groups | One quantitative of interval or ratio level | |
Null hypothesis | Null hypothesis | Null hypothesis | Null hypothesis | |
H0: $\pi_1 = \pi_2 = \ldots = \pi_I$
Here $\pi_1$ is the population proportion of 'successes' for group 1, $\pi_2$ is the population proportion of 'successes' for group 2, and $\pi_I$ is the population proportion of 'successes' for group $I.$ | H0: $\mu = \mu_0$
Here $\mu$ is the population mean, and $\mu_0$ is the population mean according to the null hypothesis. | H0: $\pi_1 = \pi_2$
Here $\pi_1$ is the population proportion of 'successes' for group 1, and $\pi_2$ is the population proportion of 'successes' for group 2. | H0: $\mu = \mu_0$
Here $\mu$ is the population mean, and $\mu_0$ is the population mean according to the null hypothesis. | |
Alternative hypothesis | Alternative hypothesis | Alternative hypothesis | Alternative hypothesis | |
H1: not all population proportions are equal | H1 two sided: $\mu \neq \mu_0$ H1 right sided: $\mu > \mu_0$ H1 left sided: $\mu < \mu_0$ | H1 two sided: $\pi_1 \neq \pi_2$ H1 right sided: $\pi_1 > \pi_2$ H1 left sided: $\pi_1 < \pi_2$ | H1 two sided: $\mu \neq \mu_0$ H1 right sided: $\mu > \mu_0$ H1 left sided: $\mu < \mu_0$ | |
Assumptions | Assumptions | Assumptions | Assumptions | |
|
|
|
| |
Test statistic | Test statistic | Test statistic | Test statistic | |
If a failure is scored as 0 and a success is scored as 1:
$Q = k(k - 1) \dfrac{\sum_{groups} \Big (\mbox{group total} - \frac{\mbox{grand total}}{k} \Big)^2}{\sum_{blocks} \mbox{block total} \times (k - \mbox{block total})}$ Here $k$ is the number of related groups (usually the number of repeated measurements), a group total is the sum of the scores in a group, a block total is the sum of the scores in a block (usually a subject), and the grand total is the sum of all the scores. Before computing $Q$, first exclude blocks with equal scores in all $k$ groups. | $z = \dfrac{\bar{y} - \mu_0}{\sigma / \sqrt{N}}$
Here $\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to the null hypothesis, $\sigma$ is the population standard deviation, and $N$ is the sample size. The denominator $\sigma / \sqrt{N}$ is the standard deviation of the sampling distribution of $\bar{y}$. The $z$ value indicates how many of these standard deviations $\bar{y}$ is removed from $\mu_0$. | $z = \dfrac{p_1 - p_2}{\sqrt{p(1 - p)\Bigg(\dfrac{1}{n_1} + \dfrac{1}{n_2}\Bigg)}}$
Here $p_1$ is the sample proportion of successes in group 1: $\dfrac{X_1}{n_1}$, $p_2$ is the sample proportion of successes in group 2: $\dfrac{X_2}{n_2}$, $p$ is the total proportion of successes in the sample: $\dfrac{X_1 + X_2}{n_1 + n_2}$, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. Note: we could just as well compute $p_2 - p_1$ in the numerator, but then the left sided alternative becomes $\pi_2 < \pi_1$, and the right sided alternative becomes $\pi_2 > \pi_1.$ | $t = \dfrac{\bar{y} - \mu_0}{s / \sqrt{N}}$
Here $\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to the null hypothesis, $s$ is the sample standard deviation, and $N$ is the sample size. The denominator $s / \sqrt{N}$ is the standard error of the sampling distribution of $\bar{y}$. The $t$ value indicates how many standard errors $\bar{y}$ is removed from $\mu_0$. | |
Sampling distribution of $Q$ if H0 were true | Sampling distribution of $z$ if H0 were true | Sampling distribution of $z$ if H0 were true | Sampling distribution of $t$ if H0 were true | |
If the number of blocks (usually the number of subjects) is large, approximately the chi-squared distribution with $k - 1$ degrees of freedom | Standard normal distribution | Approximately the standard normal distribution | $t$ distribution with $N - 1$ degrees of freedom | |
Significant? | Significant? | Significant? | Significant? | |
If the number of blocks is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
| Two sided:
| Two sided:
| Two sided:
| |
n.a. | $C\%$ confidence interval for $\mu$ | Approximate $C\%$ confidence interval for $\pi_1 - \pi_2$ | $C\%$ confidence interval for $\mu$ | |
- | $\bar{y} \pm z^* \times \dfrac{\sigma}{\sqrt{N}}$
where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval). The confidence interval for $\mu$ can also be used as significance test. | Regular (large sample):
| $\bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}}$
where the critical value $t^*$ is the value under the $t_{N-1}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). The confidence interval for $\mu$ can also be used as significance test. | |
n.a. | Effect size | n.a. | Effect size | |
- | Cohen's $d$: Standardized difference between the sample mean and $\mu_0$: $$d = \frac{\bar{y} - \mu_0}{\sigma}$$ Cohen's $d$ indicates how many standard deviations $\sigma$ the sample mean $\bar{y}$ is removed from $\mu_0.$ | - | Cohen's $d$: Standardized difference between the sample mean and $\mu_0$: $$d = \frac{\bar{y} - \mu_0}{s}$$ Cohen's $d$ indicates how many standard deviations $s$ the sample mean $\bar{y}$ is removed from $\mu_0.$ | |
n.a. | Visual representation | n.a. | Visual representation | |
- | ![]() | - | ![]() | |
Equivalent to | n.a. | Equivalent to | n.a. | |
Friedman test, with a categorical dependent variable consisting of two independent groups. | - | When testing two sided: chi-squared test for the relationship between two categorical variables, where both categorical variables have 2 levels. | - | |
Example context | Example context | Example context | Example context | |
Subjects perform three different tasks, which they can either perform correctly or incorrectly. Is there a difference in task performance between the three different tasks? | Is the average mental health score of office workers different from $\mu_0 = 50$? Assume that the standard deviation of the mental health scores in the population is $\sigma = 3.$ | Is the proportion of smokers different between men and women? Use the normal approximation for the sampling distribution of the test statistic. | Is the average mental health score of office workers different from $\mu_0 = 50$? | |
SPSS | n.a. | SPSS | SPSS | |
Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
| - | SPSS does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chi-squared test instead. The $p$ value resulting from this chi-squared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:
Analyze > Descriptive Statistics > Crosstabs...
| Analyze > Compare Means > One-Sample T Test...
| |
Jamovi | n.a. | Jamovi | Jamovi | |
Jamovi does not have a specific option for the Cochran's Q test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the $p$ value that would have resulted from the Cochran's Q test. Go to:
ANOVA > Repeated Measures ANOVA - Friedman
| - | Jamovi does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chi-squared test instead. The $p$ value resulting from this chi-squared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:
Frequencies > Independent Samples - $\chi^2$ test of association
| T-Tests > One Sample T-Test
| |
Practice questions | Practice questions | Practice questions | Practice questions | |