Cochran's Q test  overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
Cochran's Q test  One sample $z$ test for the mean  McNemar's test  Pearson correlation 


Independent/grouping variable  Independent variable  Independent variable  Variable 1  
One within subject factor ($\geq 2$ related groups)  None  2 paired groups  One quantitative of interval or ratio level  
Dependent variable  Dependent variable  Dependent variable  Variable 2  
One categorical with 2 independent groups  One quantitative of interval or ratio level  One categorical with 2 independent groups  One quantitative of interval or ratio level  
Null hypothesis  Null hypothesis  Null hypothesis  Null hypothesis  
H_{0}: $\pi_1 = \pi_2 = \ldots = \pi_I$
Here $\pi_1$ is the population proportion of 'successes' for group 1, $\pi_2$ is the population proportion of 'successes' for group 2, and $\pi_I$ is the population proportion of 'successes' for group $I.$  H_{0}: $\mu = \mu_0$
Here $\mu$ is the population mean, and $\mu_0$ is the population mean according to the null hypothesis.  Let's say that the scores on the dependent variable are scored 0 and 1. Then for each pair of scores, the data allow four options:
Other formulations of the null hypothesis are:
 H_{0}: $\rho = \rho_0$
Here $\rho$ is the Pearson correlation in the population, and $\rho_0$ is the Pearson correlation in the population according to the null hypothesis (usually 0). The Pearson correlation is a measure for the strength and direction of the linear relationship between two variables of at least interval measurement level.  
Alternative hypothesis  Alternative hypothesis  Alternative hypothesis  Alternative hypothesis  
H_{1}: not all population proportions are equal  H_{1} two sided: $\mu \neq \mu_0$ H_{1} right sided: $\mu > \mu_0$ H_{1} left sided: $\mu < \mu_0$  The alternative hypothesis H_{1} is that for each pair of scores, P(first score of pair is 0 while second score of pair is 1) $\neq$ P(first score of pair is 1 while second score of pair is 0). That is, the probability that a pair of scores switches from 0 to 1 is not the same as the probability that a pair of scores switches from 1 to 0. Other formulations of the alternative hypothesis are:
 H_{1} two sided: $\rho \neq \rho_0$ H_{1} right sided: $\rho > \rho_0$ H_{1} left sided: $\rho < \rho_0$  
Assumptions  Assumptions  Assumptions  Assumptions of test for correlation  



 
Test statistic  Test statistic  Test statistic  Test statistic  
If a failure is scored as 0 and a success is scored as 1:
$Q = k(k  1) \dfrac{\sum_{groups} \Big (\mbox{group total}  \frac{\mbox{grand total}}{k} \Big)^2}{\sum_{blocks} \mbox{block total} \times (k  \mbox{block total})}$ Here $k$ is the number of related groups (usually the number of repeated measurements), a group total is the sum of the scores in a group, a block total is the sum of the scores in a block (usually a subject), and the grand total is the sum of all the scores. Before computing $Q$, first exclude blocks with equal scores in all $k$ groups.  $z = \dfrac{\bar{y}  \mu_0}{\sigma / \sqrt{N}}$
Here $\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to the null hypothesis, $\sigma$ is the population standard deviation, and $N$ is the sample size. The denominator $\sigma / \sqrt{N}$ is the standard deviation of the sampling distribution of $\bar{y}$. The $z$ value indicates how many of these standard deviations $\bar{y}$ is removed from $\mu_0$.  $X^2 = \dfrac{(b  c)^2}{b + c}$
Here $b$ is the number of pairs in the sample for which the first score is 0 while the second score is 1, and $c$ is the number of pairs in the sample for which the first score is 1 while the second score is 0.  Test statistic for testing H0: $\rho = 0$:
 
Sampling distribution of $Q$ if H_{0} were true  Sampling distribution of $z$ if H_{0} were true  Sampling distribution of $X^2$ if H_{0} were true  Sampling distribution of $t$ and of $z$ if H_{0} were true  
If the number of blocks (usually the number of subjects) is large, approximately the chisquared distribution with $k  1$ degrees of freedom  Standard normal distribution  If $b + c$ is large enough (say, > 20), approximately the chisquared distribution with 1 degree of freedom. If $b + c$ is small, the Binomial($n$, $P$) distribution should be used, with $n = b + c$ and $P = 0.5$. In that case the test statistic becomes equal to $b$.  Sampling distribution of $t$:
 
Significant?  Significant?  Significant?  Significant?  
If the number of blocks is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
 Two sided:
 For test statistic $X^2$:
 $t$ Test two sided:
 
n.a.  $C\%$ confidence interval for $\mu$  n.a.  Approximate $C$% confidence interval for $\rho$  
  $\bar{y} \pm z^* \times \dfrac{\sigma}{\sqrt{N}}$
where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval). The confidence interval for $\mu$ can also be used as significance test.    First compute the approximate $C$% confidence interval for $\rho_{Fisher}$:
Then transform back to get the approximate $C$% confidence interval for $\rho$:
 
n.a.  Effect size  n.a.  Properties of the Pearson correlation coefficient  
  Cohen's $d$: Standardized difference between the sample mean and $\mu_0$: $$d = \frac{\bar{y}  \mu_0}{\sigma}$$ Cohen's $d$ indicates how many standard deviations $\sigma$ the sample mean $\bar{y}$ is removed from $\mu_0.$   
 
n.a.  Visual representation  n.a.  n.a.  
      
Equivalent to  n.a.  Equivalent to  Equivalent to  
Friedman test, with a categorical dependent variable consisting of two independent groups.   
 OLS regression with one independent variable:
 
Example context  Example context  Example context  Example context  
Subjects perform three different tasks, which they can either perform correctly or incorrectly. Is there a difference in task performance between the three different tasks?  Is the average mental health score of office workers different from $\mu_0 = 50$? Assume that the standard deviation of the mental health scores in the population is $\sigma = 3.$  Does a tv documentary about spiders change whether people are afraid (yes/no) of spiders?  Is there a linear relationship between physical health and mental health?  
SPSS  n.a.  SPSS  SPSS  
Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
   Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
 Analyze > Correlate > Bivariate...
 
Jamovi  n.a.  Jamovi  Jamovi  
Jamovi does not have a specific option for the Cochran's Q test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the $p$ value that would have resulted from the Cochran's Q test. Go to:
ANOVA > Repeated Measures ANOVA  Friedman
   Frequencies > Paired Samples  McNemar test
 Regression > Correlation Matrix
 
Practice questions  Practice questions  Practice questions  Practice questions  