# Marginal Homogeneity test / Stuart-Maxwell test - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons (max. of 3) by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Marginal Homogeneity test / Stuart-Maxwell test | Wilcoxon signed-rank test | Spearman's rho |
You cannot compare more than 3 methods |
---|---|---|---|

Independent variable | Independent variable | Variable 1 | |

2 paired groups | 2 paired groups | One of ordinal level | |

Dependent variable | Dependent variable | Variable 2 | |

One categorical with $J$ independent groups ($J \geqslant 2$) | One quantitative of interval or ratio level | One of ordinal level | |

Null hypothesis | Null hypothesis | Null hypothesis | |

H_{0}: for each category $j$ of the dependent variable, $\pi_j$ for the first paired group = $\pi_j$ for the second paired group.
Here $\pi_j$ is the population proportion in category $j.$ | H_{0}: $m = 0$
Here $m$ is the population median of the difference scores. A difference score is the difference between the first score of a pair and the second score of a pair. Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher. | H_{0}: $\rho_s = 0$
Here $\rho_s$ is the Spearman correlation in the population. The Spearman correlation is a measure for the strength and direction of the monotonic relationship between two variables of at least ordinal measurement level. In words, the null hypothesis would be: H _{0}: there is no monotonic relationship between the two variables in the population.
| |

Alternative hypothesis | Alternative hypothesis | Alternative hypothesis | |

H_{1}: for some categories of the dependent variable, $\pi_j$ for the first paired group $\neq$ $\pi_j$ for the second paired group. | H_{1} two sided: $m \neq 0$H _{1} right sided: $m > 0$H _{1} left sided: $m < 0$
| H_{1} two sided: $\rho_s \neq 0$H _{1} right sided: $\rho_s > 0$H _{1} left sided: $\rho_s < 0$ | |

Assumptions | Assumptions | Assumptions | |

- Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
| - The population distribution of the difference scores is symmetric
- Sample of difference scores is a simple random sample from the population of difference scores. That is, difference scores are independent of one another
ranked difference scores, we need to know whether a change in scores from, say, 6 to 7 is larger than/smaller than/equal to a change from 5 to 6. This is impossible to know for ordinal scales, since for these scales the size of the difference between values is meaningless.
| - Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
| |

Test statistic | Test statistic | Test statistic | |

Computing the test statistic is a bit complicated and involves matrix algebra. Unless you are following a technical course, you probably won't need to calculate it by hand. | Two different types of test statistics can be used, but both will result in the same test outcome. We will denote the first option the $W_1$ statistic (also known as the $T$ statistic), and the second option the $W_2$ statistic.
In order to compute each of the test statistics, follow the steps below:
- For each subject, compute the sign of the difference score $\mbox{sign}_d = \mbox{sgn}(\mbox{score}_2 - \mbox{score}_1)$. The sign is 1 if the difference is larger than zero, -1 if the diffence is smaller than zero, and 0 if the difference is equal to zero.
- For each subject, compute the absolute value of the difference score $|\mbox{score}_2 - \mbox{score}_1|$.
- Exclude subjects with a difference score of zero. This leaves us with a remaining number of difference scores equal to $N_r$.
- Assign ranks $R_d$ to the $N_r$ remaining
*absolute*difference scores. The smallest absolute difference score corresponds to a rank score of 1, and the largest absolute difference score corresponds to a rank score of $N_r$. If there are ties, assign them the average of the ranks they occupy.
- $W_1 = \sum\, R_d^{+}$
or $W_1 = \sum\, R_d^{-}$ That is, sum all ranks corresponding to a positive difference or sum all ranks corresponding to a negative difference. Theoratically, both definitions will result in the same test outcome. However:- tables with critical values for $W_1$ are usually based on the smaller of $\sum\, R_d^{+}$ and $\sum\, R_d^{-}$. So if you are using such a table, pick the smaller one.
- If you are using the normal approximation to find the $p$ value, it makes things most straightforward if you use $W_1 = \sum\, R_d^{+}$ (if you use $W_1 = \sum\, R_d^{-}$, the right and left sided alternative hypotheses 'flip').
- $W_2 = \sum\, \mbox{sign}_d \times R_d$
That is, for each remaining difference score, multiply the rank of the absolute difference score by the sign of the difference score, and then sum all of the products.
| $t = \dfrac{r_s \times \sqrt{N - 2}}{\sqrt{1 - r_s^2}} $ Here $r_s$ is the sample Spearman correlation and $N$ is the sample size. The sample Spearman correlation $r_s$ is equal to the Pearson correlation applied to the rank scores. | |

Sampling distribution of the test statistic if H_{0} were true | Sampling distribution of $W_1$ and of $W_2$ if H_{0} were true | Sampling distribution of $t$ if H_{0} were true | |

Approximately the chi-squared distribution with $J - 1$ degrees of freedom | Sampling distribution of $W_1$:
If $N_r$ is large, $W_1$ is approximately normally distributed with mean $\mu_{W_1}$ and standard deviation $\sigma_{W_1}$ if the null hypothesis were true. Here $$\mu_{W_1} = \frac{N_r(N_r + 1)}{4}$$ $$\sigma_{W_1} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{24}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_1 - \mu_{W_1}}{\sigma_{W_1}}$$ follows approximately the standard normal distribution if the null hypothesis were true. Sampling distribution of $W_2$: If $N_r$ is large, $W_2$ is approximately normally distributed with mean $0$ and standard deviation $\sigma_{W_2}$ if the null hypothesis were true. Here $$\sigma_{W_2} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{6}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_2}{\sigma_{W_2}}$$ follows approximately the standard normal distribution if the null hypothesis were true. If $N_r$ is small, the exact distribution of $W_1$ or $W_2$ should be used. Note: if ties are present in the data, the formula for the standard deviations $\sigma_{W_1}$ and $\sigma_{W_2}$ is more complicated. | Approximately the $t$ distribution with $N - 2$ degrees of freedom | |

Significant? | Significant? | Significant? | |

If we denote the test statistic as $X^2$:
- Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
- Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
| For large samples, the table for standard normal probabilities can be used: Two sided: - Check if $z$ observed in sample is at least as extreme as critical value $z^*$ or
- Find two sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
- Check if $z$ observed in sample is equal to or larger than critical value $z^*$ or
- Find right sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
- Check if $z$ observed in sample is equal to or smaller than critical value $z^*$ or
- Find left sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
| Two sided:
- Check if $t$ observed in sample is at least as extreme as critical value $t^*$ or
- Find two sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$
- Check if $t$ observed in sample is equal to or larger than critical value $t^*$ or
- Find right sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$
- Check if $t$ observed in sample is equal to or smaller than critical value $t^*$ or
- Find left sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$
| |

Example context | Example context | Example context | |

Subjects are asked to taste three different types of mayonnaise, and to indicate which of the three types of mayonnaise they like best. They then have to drink a glass of beer, and taste and rate the three types of mayonnaise again. Does drinking a beer change which type of mayonnaise people like best? | Is the median of the differences between the mental health scores before and after an intervention different from 0? | Is there a monotonic relationship between physical health and mental health? | |

SPSS | SPSS | SPSS | |

Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
- Put the two paired variables in the boxes below Variable 1 and Variable 2
- Under Test Type, select the Marginal Homogeneity test
| Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
- Put the two paired variables in the boxes below Variable 1 and Variable 2
- Under Test Type, select the Wilcoxon test
| Analyze > Correlate > Bivariate...
- Put your two variables in the box below Variables
- Under Correlation Coefficients, select Spearman
| |

n.a. | Jamovi | Jamovi | |

- | T-Tests > Paired Samples T-Test
- Put the two paired variables in the box below Paired Variables, one on the left side of the vertical line and one on the right side of the vertical line
- Under Tests, select Wilcoxon rank
- Under Hypothesis, select your alternative hypothesis
| Regression > Correlation Matrix
- Put your two variables in the white box at the right
- Under Correlation Coefficients, select Spearman
- Under Hypothesis, select your alternative hypothesis
| |

Practice questions | Practice questions | Practice questions | |