One sample Wilcoxon signedrank test  overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
One sample Wilcoxon signedrank test  MannWhitneyWilcoxon test  Goodness of fit test  Paired sample $t$ test  Two sample $t$ test  equal variances assumed  Two sample $t$ test  equal variances assumed 


Independent variable  Independent/grouping variable  Independent variable  Independent variable  Independent/grouping variable  Independent/grouping variable  
None  One categorical with 2 independent groups  None  2 paired groups  One categorical with 2 independent groups  One categorical with 2 independent groups  
Dependent variable  Dependent variable  Dependent variable  Dependent variable  Dependent variable  Dependent variable  
One of ordinal level  One of ordinal level  One categorical with $J$ independent groups ($J \geqslant 2$)  One quantitative of interval or ratio level  One quantitative of interval or ratio level  One quantitative of interval or ratio level  
Null hypothesis  Null hypothesis  Null hypothesis  Null hypothesis  Null hypothesis  Null hypothesis  
H_{0}: $m = m_0$
Here $m$ is the population median, and $m_0$ is the population median according to the null hypothesis.  If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in both populations:
Formulation 1:

 H_{0}: $\mu = \mu_0$
Here $\mu$ is the population mean of the difference scores, and $\mu_0$ is the population mean of the difference scores according to the null hypothesis, which is usually 0. A difference score is the difference between the first score of a pair and the second score of a pair.  H_{0}: $\mu_1 = \mu_2$
Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2.  H_{0}: $\mu_1 = \mu_2$
Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2.  
Alternative hypothesis  Alternative hypothesis  Alternative hypothesis  Alternative hypothesis  Alternative hypothesis  Alternative hypothesis  
H_{1} two sided: $m \neq m_0$ H_{1} right sided: $m > m_0$ H_{1} left sided: $m < m_0$  If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in both populations:
Formulation 1:

 H_{1} two sided: $\mu \neq \mu_0$ H_{1} right sided: $\mu > \mu_0$ H_{1} left sided: $\mu < \mu_0$  H_{1} two sided: $\mu_1 \neq \mu_2$ H_{1} right sided: $\mu_1 > \mu_2$ H_{1} left sided: $\mu_1 < \mu_2$  H_{1} two sided: $\mu_1 \neq \mu_2$ H_{1} right sided: $\mu_1 > \mu_2$ H_{1} left sided: $\mu_1 < \mu_2$  
Assumptions  Assumptions  Assumptions  Assumptions  Assumptions  Assumptions  





 
Test statistic  Test statistic  Test statistic  Test statistic  Test statistic  Test statistic  
Two different types of test statistics can be used, but both will result in the same test outcome. We will denote the first option the $W_1$ statistic (also known as the $T$ statistic), and the second option the $W_2$ statistic.
In order to compute each of the test statistics, follow the steps below:
 Two different types of test statistics can be used; both will result in the same test outcome. The first is the Wilcoxon rank sum statistic $W$:
Note: we could just as well base W and U on group 2. This would only 'flip' the right and left sided alternative hypotheses. Also, tables with critical values for $U$ are often based on the smaller of $U$ for group 1 and for group 2.  $X^2 = \sum{\frac{(\mbox{observed cell count}  \mbox{expected cell count})^2}{\mbox{expected cell count}}}$
Here the expected cell count for one cell = $N \times \pi_j$, the observed cell count is the observed sample count in that same cell, and the sum is over all $J$ cells.  $t = \dfrac{\bar{y}  \mu_0}{s / \sqrt{N}}$
Here $\bar{y}$ is the sample mean of the difference scores, $\mu_0$ is the population mean of the difference scores according to the null hypothesis, $s$ is the sample standard deviation of the difference scores, and $N$ is the sample size (number of difference scores). The denominator $s / \sqrt{N}$ is the standard error of the sampling distribution of $\bar{y}$. The $t$ value indicates how many standard errors $\bar{y}$ is removed from $\mu_0$.  $t = \dfrac{(\bar{y}_1  \bar{y}_2)  0}{s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}} = \dfrac{\bar{y}_1  \bar{y}_2}{s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $s_p$ is the pooled standard deviation, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis. The denominator $s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}$ is the standard error of the sampling distribution of $\bar{y}_1  \bar{y}_2$. The $t$ value indicates how many standard errors $\bar{y}_1  \bar{y}_2$ is removed from 0. Note: we could just as well compute $\bar{y}_2  \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$.  $t = \dfrac{(\bar{y}_1  \bar{y}_2)  0}{s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}} = \dfrac{\bar{y}_1  \bar{y}_2}{s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $s_p$ is the pooled standard deviation, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis. The denominator $s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}$ is the standard error of the sampling distribution of $\bar{y}_1  \bar{y}_2$. The $t$ value indicates how many standard errors $\bar{y}_1  \bar{y}_2$ is removed from 0. Note: we could just as well compute $\bar{y}_2  \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$.  
n.a.  n.a.  n.a.  n.a.  Pooled standard deviation  Pooled standard deviation  
        $s_p = \sqrt{\dfrac{(n_1  1) \times s^2_1 + (n_2  1) \times s^2_2}{n_1 + n_2  2}}$  $s_p = \sqrt{\dfrac{(n_1  1) \times s^2_1 + (n_2  1) \times s^2_2}{n_1 + n_2  2}}$  
Sampling distribution of $W_1$ and of $W_2$ if H_{0} were true  Sampling distribution of $W$ and of $U$ if H_{0} were true  Sampling distribution of $X^2$ if H_{0} were true  Sampling distribution of $t$ if H_{0} were true  Sampling distribution of $t$ if H_{0} were true  Sampling distribution of $t$ if H_{0} were true  
Sampling distribution of $W_1$:
If $N_r$ is large, $W_1$ is approximately normally distributed with mean $\mu_{W_1}$ and standard deviation $\sigma_{W_1}$ if the null hypothesis were true. Here $$\mu_{W_1} = \frac{N_r(N_r + 1)}{4}$$ $$\sigma_{W_1} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{24}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_1  \mu_{W_1}}{\sigma_{W_1}}$$ follows approximately the standard normal distribution if the null hypothesis were true. Sampling distribution of $W_2$: If $N_r$ is large, $W_2$ is approximately normally distributed with mean $0$ and standard deviation $\sigma_{W_2}$ if the null hypothesis were true. Here $$\sigma_{W_2} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{6}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_2}{\sigma_{W_2}}$$ follows approximately the standard normal distribution if the null hypothesis were true. If $N_r$ is small, the exact distribution of $W_1$ or $W_2$ should be used. Note: if ties are present in the data, the formula for the standard deviations $\sigma_{W_1}$ and $\sigma_{W_2}$ is more complicated.  Sampling distribution of $W$:
Sampling distribution of $U$: For small samples, the exact distribution of $W$ or $U$ should be used. Note: if ties are present in the data, the formula for the standard deviations $\sigma_W$ and $\sigma_U$ is more complicated.  Approximately the chisquared distribution with $J  1$ degrees of freedom  $t$ distribution with $N  1$ degrees of freedom  $t$ distribution with $n_1 + n_2  2$ degrees of freedom  $t$ distribution with $n_1 + n_2  2$ degrees of freedom  
Significant?  Significant?  Significant?  Significant?  Significant?  Significant?  
For large samples, the table for standard normal probabilities can be used: Two sided:
 For large samples, the table for standard normal probabilities can be used: Two sided:

 Two sided:
 Two sided:
 Two sided:
 
n.a.  n.a.  n.a.  $C\%$ confidence interval for $\mu$  $C\%$ confidence interval for $\mu_1  \mu_2$  $C\%$ confidence interval for $\mu_1  \mu_2$  
      $\bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}}$
where the critical value $t^*$ is the value under the $t_{N1}$ distribution with the area $C / 100$ between $t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). The confidence interval for $\mu$ can also be used as significance test.  $(\bar{y}_1  \bar{y}_2) \pm t^* \times s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}$
where the critical value $t^*$ is the value under the $t_{n_1 + n_2  2}$ distribution with the area $C / 100$ between $t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). The confidence interval for $\mu_1  \mu_2$ can also be used as significance test.  $(\bar{y}_1  \bar{y}_2) \pm t^* \times s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}$
where the critical value $t^*$ is the value under the $t_{n_1 + n_2  2}$ distribution with the area $C / 100$ between $t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). The confidence interval for $\mu_1  \mu_2$ can also be used as significance test.  
n.a.  n.a.  n.a.  Effect size  Effect size  Effect size  
      Cohen's $d$: Standardized difference between the sample mean of the difference scores and $\mu_0$: $$d = \frac{\bar{y}  \mu_0}{s}$$ Cohen's $d$ indicates how many standard deviations $s$ the sample mean of the difference scores $\bar{y}$ is removed from $\mu_0.$  Cohen's $d$: Standardized difference between the mean in group $1$ and in group $2$: $$d = \frac{\bar{y}_1  \bar{y}_2}{s_p}$$ Cohen's $d$ indicates how many standard deviations $s_p$ the two sample means are removed from each other.  Cohen's $d$: Standardized difference between the mean in group $1$ and in group $2$: $$d = \frac{\bar{y}_1  \bar{y}_2}{s_p}$$ Cohen's $d$ indicates how many standard deviations $s_p$ the two sample means are removed from each other.  
n.a.  n.a.  n.a.  Visual representation  Visual representation  Visual representation  
      
n.a.  Equivalent to  n.a.  Equivalent to  Equivalent to  Equivalent to  
  If there are no ties in the data, the two sided MannWhitneyWilcoxon test is equivalent to the KruskalWallis test with an independent variable with 2 levels ($I$ = 2).   
 One way ANOVA with an independent variable with 2 levels ($I$ = 2):
 One way ANOVA with an independent variable with 2 levels ($I$ = 2):
 
Example context  Example context  Example context  Example context  Example context  Example context  
Is the median mental health score of office workers different from $m_0 = 50$?  Do men tend to score higher on social economic status than women?  Is the proportion of people with a low, moderate, and high social economic status in the population different from $\pi_{low} = 0.2,$ $\pi_{moderate} = 0.6,$ and $\pi_{high} = 0.2$?  Is the average difference between the mental health scores before and after an intervention different from $\mu_0 = 0$?  Is the average mental health score different between men and women? Assume that in the population, the standard deviation of mental health scores is equal amongst men and women.  Is the average mental health score different between men and women? Assume that in the population, the standard deviation of mental health scores is equal amongst men and women.  
SPSS  SPSS  SPSS  SPSS  SPSS  SPSS  
Specify the measurement level of your variable on the Variable View tab, in the column named Measure. Then go to:
Analyze > Nonparametric Tests > One Sample...
 Analyze > Nonparametric Tests > Legacy Dialogs > 2 Independent Samples...
 Analyze > Nonparametric Tests > Legacy Dialogs > Chisquare...
 Analyze > Compare Means > PairedSamples T Test...
 Analyze > Compare Means > IndependentSamples T Test...
 Analyze > Compare Means > IndependentSamples T Test...
 
Jamovi  Jamovi  Jamovi  Jamovi  Jamovi  Jamovi  
TTests > One Sample TTest
 TTests > Independent Samples TTest
 Frequencies > N Outcomes  $\chi^2$ Goodness of fit
 TTests > Paired Samples TTest
 TTests > Independent Samples TTest
 TTests > Independent Samples TTest
 
Practice questions  Practice questions  Practice questions  Practice questions  Practice questions  Practice questions  