This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
One categorical with $J$ independent groups ($J \geqslant 2$)
One quantitative of interval or ratio level
One quantitative of interval or ratio level
Null hypothesis
Null hypothesis
Null hypothesis
Null hypothesis
Null hypothesis
H_{0}: $m = m_0$
Here $m$ is the population median, and $m_0$ is the population median according to the null hypothesis.
If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in both populations:
H_{0}: the population median for group 1 is equal to the population median for group 2
Else:
Formulation 1:
H_{0}: the population scores in group 1 are not systematically higher or lower than the population scores in group 2
Formulation 2:
H_{0}:
P(an observation from population 1 exceeds an observation from population 2) = P(an observation from population 2 exceeds observation from population 1)
Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher.
H_{0}: the population proportions in each of the $J$ conditions are $\pi_1$, $\pi_2$, $\ldots$, $\pi_J$
or equivalently
H_{0}: the probability of drawing an observation from condition 1 is $\pi_1$, the probability of drawing an observation from condition 2 is $\pi_2$, $\ldots$,
the probability of drawing an observation from condition $J$ is $\pi_J$
H_{0}: $\mu_1 = \mu_2$
Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2.
H_{0}: $\rho = \rho_0$
Here $\rho$ is the Pearson correlation in the population, and $\rho_0$ is the Pearson correlation in the population according to the null hypothesis (usually 0). The Pearson correlation is a measure for the strength and direction of the linear relationship between two variables of at least interval measurement level.
Alternative hypothesis
Alternative hypothesis
Alternative hypothesis
Alternative hypothesis
Alternative hypothesis
H_{1} two sided: $m \neq m_0$
H_{1} right sided: $m > m_0$
H_{1} left sided: $m < m_0$
If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in both populations:
H_{1} two sided: the population median for group 1 is not equal to the population median for group 2
H_{1} right sided: the population median for group 1 is larger than the population median for group 2
H_{1} left sided: the population median for group 1 is smaller than the population median for group 2
Else:
Formulation 1:
H_{1} two sided: the population scores in group 1 are systematically higher or lower than the population scores in group 2
H_{1} right sided: the population scores in group 1 are systematically higher than the population scores in group 2
H_{1} left sided: the population scores in group 1 are systematically lower than the population scores in group 2
Formulation 2:
H_{1} two sided: P(an observation from population 1 exceeds an observation from population 2) $\neq$ P(an observation from population 2 exceeds an observation from population 1)
H_{1} right sided: P(an observation from population 1 exceeds an observation from population 2) > P(an observation from population 2 exceeds an observation from population 1)
H_{1} left sided: P(an observation from population 1 exceeds an observation from population 2) < P(an observation from population 2 exceeds an observation from population 1)
H_{1}: the population proportions are not all as specified under the null hypothesis
or equivalently
H_{1}: the probabilities of drawing an observation from each of the conditions are not all as specified under the null hypothesis
H_{1} two sided: $\mu_1 \neq \mu_2$
H_{1} right sided: $\mu_1 > \mu_2$
H_{1} left sided: $\mu_1 < \mu_2$
H_{1} two sided: $\rho \neq \rho_0$
H_{1} right sided: $\rho > \rho_0$
H_{1} left sided: $\rho < \rho_0$
Assumptions
Assumptions
Assumptions
Assumptions
Assumptions of test for correlation
The population distribution of the scores is symmetric
Sample is a simple random sample from the population. That is, observations are independent of one another
Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2. That is, within and between groups, observations are independent of one another
Sample size is large enough for $X^2$ to be approximately chisquared distributed. Rule of thumb: all $J$ expected cell counts are 5 or more
Sample is a simple random sample from the population. That is, observations are independent of one another
Within each population, the scores on the dependent variable are normally distributed
Population standard deviations $\sigma_1$ and $\sigma_2$ are known
Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2. That is, within and between groups, observations are independent of one another
In the population, the two variables are jointly normally distributed (this covers the normality, homoscedasticity, and linearity assumptions)
Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
Note: these assumptions are only important for the significance test and confidence interval, not for the correlation coefficient itself. The correlation coefficient just measures the strength of the linear relationship between two variables.
Test statistic
Test statistic
Test statistic
Test statistic
Test statistic
Two different types of test statistics can be used, but both will result in the same test outcome. We will denote the first option the $W_1$ statistic (also known as the $T$ statistic), and the second option the $W_2$ statistic.
In order to compute each of the test statistics, follow the steps below:
For each subject, compute the sign of the difference score $\mbox{sign}_d = \mbox{sgn}(\mbox{score}  m_0)$. The sign is 1 if the difference is larger than zero, 1 if the diffence is smaller than zero, and 0 if the difference is equal to zero.
For each subject, compute the absolute value of the difference score $\mbox{score}  m_0$.
Exclude subjects with a difference score of zero. This leaves us with a remaining number of difference scores equal to $N_r$.
Assign ranks $R_d$ to the $N_r$ remaining absolute difference scores. The smallest absolute difference score corresponds to a rank score of 1, and the largest absolute difference score corresponds to a rank score of $N_r$. If there are ties, assign them the average of the ranks they occupy.
Then compute the test statistic:
$W_1 = \sum\, R_d^{+}$
or
$W_1 = \sum\, R_d^{}$
That is, sum all ranks corresponding to a positive difference or sum all ranks corresponding to a negative difference. Theoratically, both definitions will result in the same test outcome. However:
Tables with critical values for $W_1$ are usually based on the smaller of $\sum\, R_d^{+}$ and $\sum\, R_d^{}$. So if you are using such a table, pick the smaller one.
If you are using the normal approximation to find the $p$ value, it makes things most straightforward if you use $W_1 = \sum\, R_d^{+}$ (if you use $W_1 = \sum\, R_d^{}$, the right and left sided alternative hypotheses 'flip').
$W_2 = \sum\, \mbox{sign}_d \times R_d$
That is, for each remaining difference score, multiply the rank of the absolute difference score by the sign of the difference score, and then sum all of the products.
Two different types of test statistics can be used; both will result in the same test outcome. The first is the Wilcoxon rank sum statistic $W$:
The second type of test statistic is the MannWhitney $U$ statistic:
$U = W  \dfrac{n_1(n_1 + 1)}{2}$
where $n_1$ is the sample size of group 1.
Note: we could just as well base W and U on group 2. This would only 'flip' the right and left sided alternative hypotheses. Also, tables with critical values for $U$ are often based on the smaller of $U$ for group 1 and for group 2.
$X^2 = \sum{\frac{(\mbox{observed cell count}  \mbox{expected cell count})^2}{\mbox{expected cell count}}}$
Here the expected cell count for one cell = $N \times \pi_j$, the observed cell count is the observed sample count in that same cell, and the sum is over all $J$ cells.
$z = \dfrac{(\bar{y}_1  \bar{y}_2)  0}{\sqrt{\dfrac{\sigma^2_1}{n_1} + \dfrac{\sigma^2_2}{n_2}}} = \dfrac{\bar{y}_1  \bar{y}_2}{\sqrt{\dfrac{\sigma^2_1}{n_1} + \dfrac{\sigma^2_2}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2,
$\sigma^2_1$ is the population variance in population 1, $\sigma^2_2$ is the population variance in population 2,
$n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis.
Note: we could just as well compute $\bar{y}_2  \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$.
Test statistic for testing H0: $\rho = 0$:
$t = \dfrac{r \times \sqrt{N  2}}{\sqrt{1  r^2}} $
where $r$ is the sample correlation $r = \frac{1}{N  1} \sum_{j}\Big(\frac{x_{j}  \bar{x}}{s_x} \Big) \Big(\frac{y_{j}  \bar{y}}{s_y} \Big)$ and $N$ is the sample size
Test statistic for testing values for $\rho$ other than $\rho = 0$:
$r_{Fisher} = \dfrac{1}{2} \times \log\Bigg(\dfrac{1 + r}{1  r} \Bigg )$, where $r$ is the sample correlation
$\rho_{0_{Fisher}} = \dfrac{1}{2} \times \log\Bigg( \dfrac{1 + \rho_0}{1  \rho_0} \Bigg )$, where $\rho_0$ is the population correlation according to H0
Sampling distribution of $W_1$ and of $W_2$ if H_{0} were true
Sampling distribution of $W$ and of $U$ if H_{0} were true
Sampling distribution of $W_1$:
If $N_r$ is large, $W_1$ is approximately normally distributed with mean $\mu_{W_1}$ and standard deviation $\sigma_{W_1}$ if the null hypothesis were true. Here
$$\mu_{W_1} = \frac{N_r(N_r + 1)}{4}$$
$$\sigma_{W_1} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{24}}$$
Hence, if $N_r$ is large, the standardized test statistic
$$z = \frac{W_1  \mu_{W_1}}{\sigma_{W_1}}$$
follows approximately the standard normal distribution if the null hypothesis were true.
Sampling distribution of $W_2$:
If $N_r$ is large, $W_2$ is approximately normally distributed with mean $0$ and standard deviation $\sigma_{W_2}$ if the null hypothesis were true. Here
$$\sigma_{W_2} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{6}}$$
Hence, if $N_r$ is large, the standardized test statistic
$$z = \frac{W_2}{\sigma_{W_2}}$$
follows approximately the standard normal distribution if the null hypothesis were true.
If $N_r$ is small, the exact distribution of $W_1$ or $W_2$ should be used.
Note: if ties are present in the data, the formula for the standard deviations $\sigma_{W_1}$ and $\sigma_{W_2}$ is more complicated.
Sampling distribution of $W$:
For large samples, $W$ is approximately normally distributed with mean $\mu_W$ and standard deviation $\sigma_W$ if the null hypothesis were true. Here
$$
\begin{aligned}
\mu_W &= \dfrac{n_1(n_1 + n_2 + 1)}{2}\\
\sigma_W &= \sqrt{\dfrac{n_1 n_2(n_1 + n_2 + 1)}{12}}
\end{aligned}
$$
Hence, for large samples, the standardized test statistic
$$
z_W = \dfrac{W  \mu_W}{\sigma_W}\\
$$
follows approximately the standard normal distribution if the null hypothesis were true. Note that if your $W$ value is based on group 2, $\mu_W$ becomes $\frac{n_2(n_1 + n_2 + 1)}{2}$.
Sampling distribution of $U$:
For large samples, $U$ is approximately normally distributed with mean $\mu_U$ and standard deviation $\sigma_U$ if the null hypothesis were true. Here
$$
\begin{aligned}
\mu_U &= \dfrac{n_1 n_2}{2}\\
\sigma_U &= \sqrt{\dfrac{n_1 n_2(n_1 + n_2 + 1)}{12}}
\end{aligned}
$$
Hence, for large samples, the standardized test statistic
$$
z_U = \dfrac{U  \mu_U}{\sigma_U}\\
$$
follows approximately the standard normal distribution if the null hypothesis were true.
For small samples, the exact distribution of $W$ or $U$ should be used.
Note: if ties are present in the data, the formula for the standard deviations $\sigma_W$ and $\sigma_U$ is more complicated.
Approximately the chisquared distribution with $J  1$ degrees of freedom
Standard normal distribution
Sampling distribution of $t$:
$t$ distribution with $N  2$ degrees of freedom
Sampling distribution of $z$:
Approximately the standard normal distribution
Significant?
Significant?
Significant?
Significant?
Significant?
For large samples, the table for standard normal probabilities can be used:
Two sided:
Check if $z$ observed in sample is at least as extreme as critical value $z^*$ or
Find two sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
Right sided:
Check if $z$ observed in sample is equal to or larger than critical value $z^*$ or
Find right sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
Left sided:
Check if $z$ observed in sample is equal to or smaller than critical value $z^*$ or
Find left sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
For large samples, the table for standard normal probabilities can be used:
Two sided:
Check if $z$ observed in sample is at least as extreme as critical value $z^*$ or
Find two sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
Right sided:
Check if $z$ observed in sample is equal to or larger than critical value $z^*$ or
Find right sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
Left sided:
Check if $z$ observed in sample is equal to or smaller than critical value $z^*$ or
Find left sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
Two sided:
Check if $z$ observed in sample is at least as extreme as critical value $z^*$ or
Find two sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
Right sided:
Check if $z$ observed in sample is equal to or larger than critical value $z^*$ or
Find right sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
Left sided:
Check if $z$ observed in sample is equal to or smaller than critical value $z^*$ or
Find left sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
$t$ Test two sided:
Check if $t$ observed in sample is at least as extreme as critical value $t^*$ or
Find two sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$
$t$ Test right sided:
Check if $t$ observed in sample is equal to or larger than critical value $t^*$ or
Find right sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$
$t$ Test left sided:
Check if $t$ observed in sample is equal to or smaller than critical value $t^*$ or
Find left sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$
$z$ Test two sided:
Check if $z$ observed in sample is at least as extreme as critical value $z^*$ or
Find two sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
$z$ Test right sided:
Check if $z$ observed in sample is equal to or larger than critical value $z^*$ or
Find right sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
$z$ Test left sided:
Check if $z$ observed in sample is equal to or smaller than critical value $z^*$ or
Find left sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
n.a.
n.a.
n.a.
$C\%$ confidence interval for $\mu_1  \mu_2$
Approximate $C$% confidence interval for $\rho$



$(\bar{y}_1  \bar{y}_2) \pm z^* \times \sqrt{\dfrac{\sigma^2_1}{n_1} + \dfrac{\sigma^2_2}{n_2}}$
where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval).
where $r_{Fisher} = \frac{1}{2} \times \log\Bigg(\dfrac{1 + r}{1  r} \Bigg )$ and the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval).
Then transform back to get the approximate $C$% confidence interval for $\rho$:
The Pearson correlation coefficient is a measure for the linear relationship between two quantitative variables.
The Pearson correlation coefficient squared reflects the proportion of variance explained in one variable by the other variable.
The Pearson correlation coefficient can take on values between 1 (perfect negative relationship) and 1 (perfect positive relationship). A value of 0 means no linear relationship.
The absolute size of the Pearson correlation coefficient is not affected by any linear transformation of the variables. However, the sign of the Pearson correlation will flip when the scores on one of the two variables are multiplied by a negative number (reversing the direction of measurement of that variable). For example:
the correlation between $x$ and $y$ is equivalent to the correlation between $3x + 5$ and $2y  6$.
the absolute value of the correlation between $x$ and $y$ is equivalent to the absolute value of the correlation between $3x + 5$ and $2y  6$. However, the signs of the two correlation coefficients will be in opposite directions, due to the multiplication of $x$ by $3$.
The Pearson correlation coefficient does not say anything about causality.
The Pearson correlation coefficient is sensitive to outliers.
n.a.
n.a.
n.a.
Visual representation
n.a.




n.a.
Equivalent to
n.a.
n.a.
Equivalent to

If there are no ties in the data, the two sided MannWhitneyWilcoxon test is equivalent to the KruskalWallis test with an independent variable with 2 levels ($I$ = 2).
Results significance test ($t$ and $p$ value) testing $H_0$: $\beta_1 = 0$ are equivalent to results significance test testing $H_0$: $\rho = 0$
Example context
Example context
Example context
Example context
Example context
Is the median mental health score of office workers different from $m_0 = 50$?
Do men tend to score higher on social economic status than women?
Is the proportion of people with a low, moderate, and high social economic status in the population different from $\pi_{low} = 0.2,$ $\pi_{moderate} = 0.6,$ and $\pi_{high} = 0.2$?
Is the average mental health score different between men and women? Assume that in the population, the standard devation of the mental health scores is $\sigma_1 = 2$ amongst men and $\sigma_2 = 2.5$ amongst women.
Is there a linear relationship between physical health and mental health?
SPSS
SPSS
SPSS
n.a.
SPSS
Specify the measurement level of your variable on the Variable View tab, in the column named Measure. Then go to:
Analyze > Nonparametric Tests > One Sample...
On the Objective tab, choose Customize Analysis
On the Fields tab, specify the variable for which you want to compute the Wilcoxon signedrank test
On the Settings tab, choose Customize tests and check the box for 'Compare median to hypothesized (Wilcoxon signedrank test)'. Fill in your $m_0$ in the box next to Hypothesized median
Click Run
Double click on the output table to see the full results
Put your dependent variable in the box below Test Variable List and your independent (grouping) variable in the box below Grouping Variable
Click on the Define Groups... button. If you can't click on it, first click on the grouping variable so its background turns yellow
Fill in the value you have used to indicate your first group in the box next to Group 1, and the value you have used to indicate your second group in the box next to Group 2
Put your categorical variable in the box below Test Variable List
Fill in the population proportions / probabilities according to $H_0$ in the box below Expected Values. If $H_0$ states that they are all equal, just pick 'All categories equal' (default)

Analyze > Correlate > Bivariate...
Put your two variables in the box below Variables
Jamovi
Jamovi
Jamovi
n.a.
Jamovi
TTests > One Sample TTest
Put your variable in the box below Dependent Variables
Under Tests, select Wilcoxon rank
Under Hypothesis, fill in the value for $m_0$ in the box next to Test Value, and select your alternative hypothesis
TTests > Independent Samples TTest
Put your dependent variable in the box below Dependent Variables and your independent (grouping) variable in the box below Grouping Variable
Under Tests, select MannWhitney U
Under Hypothesis, select your alternative hypothesis
Frequencies > N Outcomes  $\chi^2$ Goodness of fit
Put your categorical variable in the box below Variable
Click on Expected Proportions and fill in the population proportions / probabilities according to $H_0$ in the boxes below Ratio. If $H_0$ states that they are all equal, you can leave the ratios equal to the default values (1)

Regression > Correlation Matrix
Put your two variables in the white box at the right
Under Correlation Coefficients, select Pearson (selected by default)
Under Hypothesis, select your alternative hypothesis