This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
One sample Wilcoxon signedrank test
$z$ test for the difference between two proportions
One or more quantitative of interval or ratio level and/or one or more categorical with independent groups, transformed into code variables
Dependent variable
Dependent variable
Dependent variable
Dependent variable
One of ordinal level
One categorical with 2 independent groups
One quantitative of interval or ratio level
One quantitative of interval or ratio level
Null hypothesis
Null hypothesis
Null hypothesis
Null hypothesis
H_{0}: $m = m_0$
Here $m$ is the population median, and $m_0$ is the population median according to the null hypothesis.
H_{0}: $\pi_1 = \pi_2$
Here $\pi_1$ is the population proportion of 'successes' for group 1, and $\pi_2$ is the population proportion of 'successes' for group 2.
H_{0}: $\mu = \mu_0$
Here $\mu$ is the population mean of the difference scores, and $\mu_0$ is the population mean of the difference scores according to the null hypothesis, which is usually 0. A difference score is the difference between the first score of a pair and the second score of a pair.
H_{0}: the variance explained by all the independent variables together (the complete model) is 0 in the population, i.e. $\rho^2 = 0$
$t$ test for individual regression coefficient $\beta_k$:
H_{0}: $\beta_k = 0$
in the regression equation
$
\mu_y = \beta_0 + \beta_1 \times x_1 + \beta_2 \times x_2 + \ldots + \beta_K \times x_K$. Here $ x_i$ represents independent variable $ i$, $\beta_i$ is the regression weight for independent variable $ x_i$, and $\mu_y$ represents the population mean of the dependent variable $ y$ given the scores on the independent variables.
Alternative hypothesis
Alternative hypothesis
Alternative hypothesis
Alternative hypothesis
H_{1} two sided: $m \neq m_0$
H_{1} right sided: $m > m_0$
H_{1} left sided: $m < m_0$
H_{1} two sided: $\pi_1 \neq \pi_2$
H_{1} right sided: $\pi_1 > \pi_2$
H_{1} left sided: $\pi_1 < \pi_2$
H_{1} two sided: $\mu \neq \mu_0$
H_{1} right sided: $\mu > \mu_0$
H_{1} left sided: $\mu < \mu_0$
$F$ test for the complete regression model:
H_{1}: not all population regression coefficients are 0 or equivalenty
H_{1}: the variance explained by all the independent variables together (the complete model) is larger than 0 in the population, i.e. $\rho^2 > 0$
$t$ test for individual regression coefficient $\beta_k$:
H_{1} two sided: $\beta_k \neq 0$
H_{1} right sided: $\beta_k > 0$
H_{1} left sided: $\beta_k < 0$
Assumptions
Assumptions
Assumptions
Assumptions
The population distribution of the scores is symmetric
Sample is a simple random sample from the population. That is, observations are independent of one another
Sample size is large enough for $z$ to be approximately normally distributed. Rule of thumb:
Significance test: number of successes and number of failures are each 5 or more in both sample groups
Regular (large sample) 90%, 95%, or 99% confidence interval: number of successes and number of failures are each 10 or more in both sample groups
Plus four 90%, 95%, or 99% confidence interval: sample sizes of both groups are 5 or more
Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2. That is, within and between groups, observations are independent of one another
Difference scores are normally distributed in the population
Sample of difference scores is a simple random sample from the population of difference scores. That is, difference scores are independent of one another
In the population, the residuals are normally distributed at each combination of values of the independent variables
In the population, the standard deviation $\sigma$ of the residuals is the same for each combination of values of the independent variables (homoscedasticity)
In the population, the relationship between the independent variables and the mean of the dependent variable $\mu_y$ is linear. If this linearity assumption holds, the mean of the residuals is 0 for each combination of values of the independent variables
The residuals are independent of one another
Often ignored additional assumption:
Variables are measured without error
Also pay attention to:
Multicollinearity
Outliers
Test statistic
Test statistic
Test statistic
Test statistic
Two different types of test statistics can be used, but both will result in the same test outcome. We will denote the first option the $W_1$ statistic (also known as the $T$ statistic), and the second option the $W_2$ statistic.
In order to compute each of the test statistics, follow the steps below:
For each subject, compute the sign of the difference score $\mbox{sign}_d = \mbox{sgn}(\mbox{score}  m_0)$. The sign is 1 if the difference is larger than zero, 1 if the diffence is smaller than zero, and 0 if the difference is equal to zero.
For each subject, compute the absolute value of the difference score $\mbox{score}  m_0$.
Exclude subjects with a difference score of zero. This leaves us with a remaining number of difference scores equal to $N_r$.
Assign ranks $R_d$ to the $N_r$ remaining absolute difference scores. The smallest absolute difference score corresponds to a rank score of 1, and the largest absolute difference score corresponds to a rank score of $N_r$. If there are ties, assign them the average of the ranks they occupy.
Then compute the test statistic:
$W_1 = \sum\, R_d^{+}$
or
$W_1 = \sum\, R_d^{}$
That is, sum all ranks corresponding to a positive difference or sum all ranks corresponding to a negative difference. Theoratically, both definitions will result in the same test outcome. However:
Tables with critical values for $W_1$ are usually based on the smaller of $\sum\, R_d^{+}$ and $\sum\, R_d^{}$. So if you are using such a table, pick the smaller one.
If you are using the normal approximation to find the $p$ value, it makes things most straightforward if you use $W_1 = \sum\, R_d^{+}$ (if you use $W_1 = \sum\, R_d^{}$, the right and left sided alternative hypotheses 'flip').
$W_2 = \sum\, \mbox{sign}_d \times R_d$
That is, for each remaining difference score, multiply the rank of the absolute difference score by the sign of the difference score, and then sum all of the products.
$z = \dfrac{p_1  p_2}{\sqrt{p(1  p)\Bigg(\dfrac{1}{n_1} + \dfrac{1}{n_2}\Bigg)}}$
Here $p_1$ is the sample proportion of successes in group 1: $\dfrac{X_1}{n_1}$,
$p_2$ is the sample proportion of successes in group 2: $\dfrac{X_2}{n_2}$,
$p$ is the total proportion of successes in the sample: $\dfrac{X_1 + X_2}{n_1 + n_2}$,
$n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2.
Note: we could just as well compute $p_2  p_1$ in the numerator, but then the left sided alternative becomes $\pi_2 < \pi_1$, and the right sided alternative becomes $\pi_2 > \pi_1.$
$t = \dfrac{\bar{y}  \mu_0}{s / \sqrt{N}}$
Here $\bar{y}$ is the sample mean of the difference scores, $\mu_0$ is the population mean of the difference scores according to the null hypothesis, $s$ is the sample standard deviation of the difference scores, and $N$ is the sample size (number of difference scores).
$
\begin{aligned}[t]
F &= \dfrac{\sum (\hat{y}_j  \bar{y})^2 / K}{\sum (y_j  \hat{y}_j)^2 / (N  K  1)}\\
&= \dfrac{\mbox{sum of squares model} / \mbox{degrees of freedom model}}{\mbox{sum of squares error} / \mbox{degrees of freedom error}}\\
&= \dfrac{\mbox{mean square model}}{\mbox{mean square error}}
\end{aligned}
$
where $\hat{y}_j$ is the predicted score on the dependent variable $y$ of subject $j$, $\bar{y}$ is the mean of $y$, $y_j$ is the score on $y$ of subject $j$, $N$ is the total sample size, and $K$ is the number of independent variables.
$t$ test for individual $\beta_k$:
$t = \dfrac{b_k}{SE_{b_k}}$
If only one independent variable: $SE_{b_1} = \dfrac{\sqrt{\sum (y_j  \hat{y}_j)^2 / (N  2)}}{\sqrt{\sum (x_j  \bar{x})^2}} = \dfrac{s}{\sqrt{\sum (x_j  \bar{x})^2}}$ with $s$ the sample standard deviation of the residuals, $x_j$ the score of subject $j$ on the independent variable $x$, and $\bar{x}$ the mean of $x$. For models with more than one independent variable, computing $SE_{b_k}$ is more complicated.
Note 1: mean square model is also known as mean square regression, and mean square error is also known as mean square residual.
Note 2: if there is only one independent variable in the model ($K = 1$), the $F$ test for the complete regression model is equivalent to the two sided $t$ test for $\beta_1.$
n.a.
n.a.
n.a.
Sample standard deviation of the residuals $s$



$\begin{aligned}
s &= \sqrt{\dfrac{\sum (y_j  \hat{y}_j)^2}{N  K  1}}\\ &= \sqrt{\dfrac{\mbox{sum of squares error}}{\mbox{degrees of freedom error}}}\\ &= \sqrt{\mbox{mean square error}}
\end{aligned}
$
Sampling distribution of $W_1$ and of $W_2$ if H_{0} were true
Sampling distribution of $W_1$:
If $N_r$ is large, $W_1$ is approximately normally distributed with mean $\mu_{W_1}$ and standard deviation $\sigma_{W_1}$ if the null hypothesis were true. Here
$$\mu_{W_1} = \frac{N_r(N_r + 1)}{4}$$
$$\sigma_{W_1} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{24}}$$
Hence, if $N_r$ is large, the standardized test statistic
$$z = \frac{W_1  \mu_{W_1}}{\sigma_{W_1}}$$
follows approximately the standard normal distribution if the null hypothesis were true.
Sampling distribution of $W_2$:
If $N_r$ is large, $W_2$ is approximately normally distributed with mean $0$ and standard deviation $\sigma_{W_2}$ if the null hypothesis were true. Here
$$\sigma_{W_2} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{6}}$$
Hence, if $N_r$ is large, the standardized test statistic
$$z = \frac{W_2}{\sigma_{W_2}}$$
follows approximately the standard normal distribution if the null hypothesis were true.
If $N_r$ is small, the exact distribution of $W_1$ or $W_2$ should be used.
Note: if ties are present in the data, the formula for the standard deviations $\sigma_{W_1}$ and $\sigma_{W_2}$ is more complicated.
Approximately the standard normal distribution
$t$ distribution with $N  1$ degrees of freedom
Sampling distribution of $F$:
$F$ distribution with $K$ (df model, numerator) and $N  K  1$ (df error, denominator) degrees of freedom
Sampling distribution of $t$:
$t$ distribution with $N  K  1$ (df error) degrees of freedom
Significant?
Significant?
Significant?
Significant?
For large samples, the table for standard normal probabilities can be used:
Two sided:
Check if $z$ observed in sample is at least as extreme as critical value $z^*$ or
Find two sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
Right sided:
Check if $z$ observed in sample is equal to or larger than critical value $z^*$ or
Find right sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
Left sided:
Check if $z$ observed in sample is equal to or smaller than critical value $z^*$ or
Find left sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
Two sided:
Check if $z$ observed in sample is at least as extreme as critical value $z^*$ or
Find two sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
Right sided:
Check if $z$ observed in sample is equal to or larger than critical value $z^*$ or
Find right sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
Left sided:
Check if $z$ observed in sample is equal to or smaller than critical value $z^*$ or
Find left sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
Two sided:
Check if $t$ observed in sample is at least as extreme as critical value $t^*$ or
Find two sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$
Right sided:
Check if $t$ observed in sample is equal to or larger than critical value $t^*$ or
Find right sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$
Left sided:
Check if $t$ observed in sample is equal to or smaller than critical value $t^*$ or
Find left sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$
$F$ test:
Check if $F$ observed in sample is equal to or larger than critical value $F^*$ or
Find $p$ value corresponding to observed $F$ and check if it is equal to or smaller than $\alpha$
$t$ Test two sided:
Check if $t$ observed in sample is at least as extreme as critical value $t^*$ or
Find two sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$
$t$ Test right sided:
Check if $t$ observed in sample is equal to or larger than critical value $t^*$ or
Find right sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$
$t$ Test left sided:
Check if $t$ observed in sample is equal to or smaller than critical value $t^*$ or
Find left sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$
n.a.
Approximate $C\%$ confidence interval for $\pi_1  \pi_2$
$C\%$ confidence interval for $\mu$
$C\%$ confidence interval for $\beta_k$ and for $\mu_y$, $C\%$ prediction interval for $y_{new}$

Regular (large sample):
$(p_1  p_2) \pm z^* \times \sqrt{\dfrac{p_1(1  p_1)}{n_1} + \dfrac{p_2(1  p_2)}{n_2}}$
where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval)
With plus four method:
$(p_{1.plus}  p_{2.plus}) \pm z^* \times \sqrt{\dfrac{p_{1.plus}(1  p_{1.plus})}{n_1 + 2} + \dfrac{p_{2.plus}(1  p_{2.plus})}{n_2 + 2}}$
where $p_{1.plus} = \dfrac{X_1 + 1}{n_1 + 2}$, $p_{2.plus} = \dfrac{X_2 + 1}{n_2 + 2}$, and the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval)
$\bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}}$
where the critical value $t^*$ is the value under the $t_{N1}$ distribution with the area $C / 100$ between $t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20).
If only one independent variable: $SE_{b_1} = \dfrac{\sqrt{\sum (y_j  \hat{y}_j)^2 / (N  2)}}{\sqrt{\sum (x_j  \bar{x})^2}} = \dfrac{s}{\sqrt{\sum (x_j  \bar{x})^2}}$
Confidence interval for $\mu_y$, the population mean of $y$ given the values on the independent variables:
$\hat{y} \pm t^* \times SE_{\hat{y}}$
If only one independent variable:
$SE_{\hat{y}} = s \sqrt{\dfrac{1}{N} + \dfrac{(x^*  \bar{x})^2}{\sum (x_j  \bar{x})^2}}$
Prediction interval for $y_{new}$, the score on $y$ of a future respondent:
$\hat{y} \pm t^* \times SE_{y_{new}}$
If only one independent variable:
$SE_{y_{new}} = s \sqrt{1 + \dfrac{1}{N} + \dfrac{(x^*  \bar{x})^2}{\sum (x_j  \bar{x})^2}}$
In all formulas, the critical value $t^*$ is the value under the $t_{N  K  1}$ distribution with the area $C / 100$ between $t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20).
n.a.
n.a.
Effect size
Effect size


Cohen's $d$:
Standardized difference between the sample mean of the difference scores and $\mu_0$:
$$d = \frac{\bar{y}  \mu_0}{s}$$
Cohen's $d$ indicates how many standard deviations $s$ the sample mean of the difference scores $\bar{y}$ is removed from $\mu_0.$
Complete model:
Proportion variance explained $R^2$:
Proportion variance of the dependent variable $y$ explained by the sample regression equation (the independent variables):
$$
\begin{align}
R^2 &= \dfrac{\sum (\hat{y}_j  \bar{y})^2}{\sum (y_j  \bar{y})^2}\\ &= \dfrac{\mbox{sum of squares model}}{\mbox{sum of squares total}}\\
&= 1  \dfrac{\mbox{sum of squares error}}{\mbox{sum of squares total}}\\
&= r(y, \hat{y})^2
\end{align}
$$
$R^2$ is the proportion variance explained in the sample by the sample regression equation. It is a positively biased estimate of the proportion variance explained in the population by the population regression equation, $\rho^2$. If there is only one independent variable, $R^2 = r^2$: the correlation between the independent variable $x$ and dependent variable $y$ squared.
Wherry's $R^2$ / shrunken $R^2$:
Corrects for the positive bias in $R^2$ and is equal to
$$R^2_W = 1  \frac{N  1}{N  K  1}(1  R^2)$$
$R^2_W$ is a less biased estimate than $R^2$ of the proportion variance explained in the population by the population regression equation, $\rho^2.$
Stein's $R^2$:
Estimates the proportion of variance in $y$ that we expect the current sample regression equation to explain in a different sample drawn from the same population. It is equal to
$$R^2_S = 1  \frac{(N  1)(N  2)(N + 1)}{(N  K  1)(N  K  2)(N)}(1  R^2)$$
Per independent variable:
Correlation squared $r^2_k$: the proportion of the total variance in the dependent variable $y$ that is explained by the independent variable $x_k$, not corrected for the other independent variables in the model
Semipartial correlation squared $sr^2_k$: the proportion of the total variance in the dependent variable $y$ that is uniquely explained by the independent variable $x_k$, beyond the part that is already explained by the other independent variables in the model
Partial correlation squared $pr^2_k$: the proportion of the variance in the dependent variable $y$ not explained by the other independent variables, that is uniquely explained by the independent variable $x_k$
Repeated measures ANOVA with one dichotomous within subjects factor.

Example context
Example context
Example context
Example context
Is the median mental health score of office workers different from $m_0 = 50$?
Is the proportion of smokers different between men and women? Use the normal approximation for the sampling distribution of the test statistic.
Is the average difference between the mental health scores before and after an intervention different from $\mu_0 = 0$?
Can mental health be predicted from fysical health, economic class, and gender?
SPSS
SPSS
SPSS
SPSS
Specify the measurement level of your variable on the Variable View tab, in the column named Measure. Then go to:
Analyze > Nonparametric Tests > One Sample...
On the Objective tab, choose Customize Analysis
On the Fields tab, specify the variable for which you want to compute the Wilcoxon signedrank test
On the Settings tab, choose Customize tests and check the box for 'Compare median to hypothesized (Wilcoxon signedrank test)'. Fill in your $m_0$ in the box next to Hypothesized median
Click Run
Double click on the output table to see the full results
SPSS does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chisquared test instead. The $p$ value resulting from this chisquared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:
Analyze > Descriptive Statistics > Crosstabs...
Put your independent (grouping) variable in the box below Row(s), and your dependent variable in the box below Column(s)
Click the Statistics... button, and click on the square in front of Chisquare
Continue and click OK
Analyze > Compare Means > PairedSamples T Test...
Put the two paired variables in the boxes below Variable 1 and Variable 2
Analyze > Regression > Linear...
Put your dependent variable in the box below Dependent and your independent (predictor) variables in the box below Independent(s)
Jamovi
Jamovi
Jamovi
Jamovi
TTests > One Sample TTest
Put your variable in the box below Dependent Variables
Under Tests, select Wilcoxon rank
Under Hypothesis, fill in the value for $m_0$ in the box next to Test Value, and select your alternative hypothesis
Jamovi does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chisquared test instead. The $p$ value resulting from this chisquared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:
Frequencies > Independent Samples  $\chi^2$ test of association
Put your independent (grouping) variable in the box below Rows, and your dependent variable in the box below Columns
TTests > Paired Samples TTest
Put the two paired variables in the box below Paired Variables, one on the left side of the vertical line and one on the right side of the vertical line
Under Hypothesis, select your alternative hypothesis
Regression > Linear Regression
Put your dependent variable in the box below Dependent Variable and your independent variables of interval/ratio level in the box below Covariates
If you also have code (dummy) variables as independent variables, you can put these in the box below Covariates as well
Instead of transforming your categorical independent variable(s) into code variables, you can also put the untransformed categorical independent variables in the box below Factors. Jamovi will then make the code variables for you 'behind the scenes'