One sample Wilcoxon signed-rank test - overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table
One sample Wilcoxon signed-rank test | $z$ test for the difference between two proportions | Paired sample $t$ test | Friedman test | Friedman test |
|
---|---|---|---|---|---|
Independent variable | Independent/grouping variable | Independent variable | Independent/grouping variable | Independent/grouping variable | |
None | One categorical with 2 independent groups | 2 paired groups | One within subject factor ($\geq 2$ related groups) | One within subject factor ($\geq 2$ related groups) | |
Dependent variable | Dependent variable | Dependent variable | Dependent variable | Dependent variable | |
One of ordinal level | One categorical with 2 independent groups | One quantitative of interval or ratio level | One of ordinal level | One of ordinal level | |
Null hypothesis | Null hypothesis | Null hypothesis | Null hypothesis | Null hypothesis | |
H0: $m = m_0$
Here $m$ is the population median, and $m_0$ is the population median according to the null hypothesis. | H0: $\pi_1 = \pi_2$
Here $\pi_1$ is the population proportion of 'successes' for group 1, and $\pi_2$ is the population proportion of 'successes' for group 2. | H0: $\mu = \mu_0$
Here $\mu$ is the population mean of the difference scores, and $\mu_0$ is the population mean of the difference scores according to the null hypothesis, which is usually 0. A difference score is the difference between the first score of a pair and the second score of a pair. | H0: the population scores in any of the related groups are not systematically higher or lower than the population scores in any of the other related groups
Usually the related groups are the different measurement points. Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher. | H0: the population scores in any of the related groups are not systematically higher or lower than the population scores in any of the other related groups
Usually the related groups are the different measurement points. Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher. | |
Alternative hypothesis | Alternative hypothesis | Alternative hypothesis | Alternative hypothesis | Alternative hypothesis | |
H1 two sided: $m \neq m_0$ H1 right sided: $m > m_0$ H1 left sided: $m < m_0$ | H1 two sided: $\pi_1 \neq \pi_2$ H1 right sided: $\pi_1 > \pi_2$ H1 left sided: $\pi_1 < \pi_2$ | H1 two sided: $\mu \neq \mu_0$ H1 right sided: $\mu > \mu_0$ H1 left sided: $\mu < \mu_0$ | H1: the population scores in some of the related groups are systematically higher or lower than the population scores in other related groups | H1: the population scores in some of the related groups are systematically higher or lower than the population scores in other related groups | |
Assumptions | Assumptions | Assumptions | Assumptions | Assumptions | |
|
|
|
|
| |
Test statistic | Test statistic | Test statistic | Test statistic | Test statistic | |
Two different types of test statistics can be used, but both will result in the same test outcome. We will denote the first option the $W_1$ statistic (also known as the $T$ statistic), and the second option the $W_2$ statistic.
In order to compute each of the test statistics, follow the steps below:
| $z = \dfrac{p_1 - p_2}{\sqrt{p(1 - p)\Bigg(\dfrac{1}{n_1} + \dfrac{1}{n_2}\Bigg)}}$
Here $p_1$ is the sample proportion of successes in group 1: $\dfrac{X_1}{n_1}$, $p_2$ is the sample proportion of successes in group 2: $\dfrac{X_2}{n_2}$, $p$ is the total proportion of successes in the sample: $\dfrac{X_1 + X_2}{n_1 + n_2}$, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. Note: we could just as well compute $p_2 - p_1$ in the numerator, but then the left sided alternative becomes $\pi_2 < \pi_1$, and the right sided alternative becomes $\pi_2 > \pi_1.$ | $t = \dfrac{\bar{y} - \mu_0}{s / \sqrt{N}}$
Here $\bar{y}$ is the sample mean of the difference scores, $\mu_0$ is the population mean of the difference scores according to the null hypothesis, $s$ is the sample standard deviation of the difference scores, and $N$ is the sample size (number of difference scores). The denominator $s / \sqrt{N}$ is the standard error of the sampling distribution of $\bar{y}$. The $t$ value indicates how many standard errors $\bar{y}$ is removed from $\mu_0$. | $Q = \dfrac{12}{N \times k(k + 1)} \sum R^2_i - 3 \times N(k + 1)$
Here $N$ is the number of 'blocks' (usually the subjects - so if you have 4 repeated measurements for 60 subjects, $N$ equals 60), $k$ is the number of related groups (usually the number of repeated measurements), and $R_i$ is the sum of ranks in group $i$. Remember that multiplication precedes addition, so first compute $\frac{12}{N \times k(k + 1)} \times \sum R^2_i$ and then subtract $3 \times N(k + 1)$. Note: if ties are present in the data, the formula for $Q$ is more complicated. | $Q = \dfrac{12}{N \times k(k + 1)} \sum R^2_i - 3 \times N(k + 1)$
Here $N$ is the number of 'blocks' (usually the subjects - so if you have 4 repeated measurements for 60 subjects, $N$ equals 60), $k$ is the number of related groups (usually the number of repeated measurements), and $R_i$ is the sum of ranks in group $i$. Remember that multiplication precedes addition, so first compute $\frac{12}{N \times k(k + 1)} \times \sum R^2_i$ and then subtract $3 \times N(k + 1)$. Note: if ties are present in the data, the formula for $Q$ is more complicated. | |
Sampling distribution of $W_1$ and of $W_2$ if H0 were true | Sampling distribution of $z$ if H0 were true | Sampling distribution of $t$ if H0 were true | Sampling distribution of $Q$ if H0 were true | Sampling distribution of $Q$ if H0 were true | |
Sampling distribution of $W_1$:
If $N_r$ is large, $W_1$ is approximately normally distributed with mean $\mu_{W_1}$ and standard deviation $\sigma_{W_1}$ if the null hypothesis were true. Here $$\mu_{W_1} = \frac{N_r(N_r + 1)}{4}$$ $$\sigma_{W_1} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{24}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_1 - \mu_{W_1}}{\sigma_{W_1}}$$ follows approximately the standard normal distribution if the null hypothesis were true. Sampling distribution of $W_2$: If $N_r$ is large, $W_2$ is approximately normally distributed with mean $0$ and standard deviation $\sigma_{W_2}$ if the null hypothesis were true. Here $$\sigma_{W_2} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{6}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_2}{\sigma_{W_2}}$$ follows approximately the standard normal distribution if the null hypothesis were true. If $N_r$ is small, the exact distribution of $W_1$ or $W_2$ should be used. Note: if ties are present in the data, the formula for the standard deviations $\sigma_{W_1}$ and $\sigma_{W_2}$ is more complicated. | Approximately the standard normal distribution | $t$ distribution with $N - 1$ degrees of freedom | If the number of blocks $N$ is large, approximately the chi-squared distribution with $k - 1$ degrees of freedom.
For small samples, the exact distribution of $Q$ should be used. | If the number of blocks $N$ is large, approximately the chi-squared distribution with $k - 1$ degrees of freedom.
For small samples, the exact distribution of $Q$ should be used. | |
Significant? | Significant? | Significant? | Significant? | Significant? | |
For large samples, the table for standard normal probabilities can be used: Two sided:
| Two sided:
| Two sided:
| If the number of blocks $N$ is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
| If the number of blocks $N$ is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
| |
n.a. | Approximate $C\%$ confidence interval for $\pi_1 - \pi_2$ | $C\%$ confidence interval for $\mu$ | n.a. | n.a. | |
- | Regular (large sample):
| $\bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}}$
where the critical value $t^*$ is the value under the $t_{N-1}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). The confidence interval for $\mu$ can also be used as significance test. | - | - | |
n.a. | n.a. | Effect size | n.a. | n.a. | |
- | - | Cohen's $d$: Standardized difference between the sample mean of the difference scores and $\mu_0$: $$d = \frac{\bar{y} - \mu_0}{s}$$ Cohen's $d$ indicates how many standard deviations $s$ the sample mean of the difference scores $\bar{y}$ is removed from $\mu_0.$ | - | - | |
n.a. | n.a. | Visual representation | n.a. | n.a. | |
- | - | ![]() | - | - | |
n.a. | Equivalent to | Equivalent to | n.a. | n.a. | |
- | When testing two sided: chi-squared test for the relationship between two categorical variables, where both categorical variables have 2 levels. |
| - | - | |
Example context | Example context | Example context | Example context | Example context | |
Is the median mental health score of office workers different from $m_0 = 50$? | Is the proportion of smokers different between men and women? Use the normal approximation for the sampling distribution of the test statistic. | Is the average difference between the mental health scores before and after an intervention different from $\mu_0 = 0$? | Is there a difference in depression level between measurement point 1 (pre-intervention), measurement point 2 (1 week post-intervention), and measurement point 3 (6 weeks post-intervention)? | Is there a difference in depression level between measurement point 1 (pre-intervention), measurement point 2 (1 week post-intervention), and measurement point 3 (6 weeks post-intervention)? | |
SPSS | SPSS | SPSS | SPSS | SPSS | |
Specify the measurement level of your variable on the Variable View tab, in the column named Measure. Then go to:
Analyze > Nonparametric Tests > One Sample...
| SPSS does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chi-squared test instead. The $p$ value resulting from this chi-squared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:
Analyze > Descriptive Statistics > Crosstabs...
| Analyze > Compare Means > Paired-Samples T Test...
| Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
| Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
| |
Jamovi | Jamovi | Jamovi | Jamovi | Jamovi | |
T-Tests > One Sample T-Test
| Jamovi does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chi-squared test instead. The $p$ value resulting from this chi-squared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:
Frequencies > Independent Samples - $\chi^2$ test of association
| T-Tests > Paired Samples T-Test
| ANOVA > Repeated Measures ANOVA - Friedman
| ANOVA > Repeated Measures ANOVA - Friedman
| |
Practice questions | Practice questions | Practice questions | Practice questions | Practice questions | |