# One sample Wilcoxon signed-rank test - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

One sample Wilcoxon signed-rank test
$z$ test for the difference between two proportions
Paired sample $t$ test
Chi-squared test for the relationship between two categorical variables
Two sample $t$ test - equal variances not assumed
Independent variableIndependent/grouping variableIndependent variableIndependent /column variableIndependent/grouping variable
NoneOne categorical with 2 independent groups2 paired groupsOne categorical with $I$ independent groups ($I \geqslant 2$)One categorical with 2 independent groups
Dependent variableDependent variableDependent variableDependent /row variableDependent variable
One of ordinal levelOne categorical with 2 independent groupsOne quantitative of interval or ratio levelOne categorical with $J$ independent groups ($J \geqslant 2$)One quantitative of interval or ratio level
Null hypothesisNull hypothesisNull hypothesisNull hypothesisNull hypothesis
H0: $m = m_0$

Here $m$ is the population median, and $m_0$ is the population median according to the null hypothesis.
H0: $\pi_1 = \pi_2$

Here $\pi_1$ is the population proportion of 'successes' for group 1, and $\pi_2$ is the population proportion of 'successes' for group 2.
H0: $\mu = \mu_0$

Here $\mu$ is the population mean of the difference scores, and $\mu_0$ is the population mean of the difference scores according to the null hypothesis, which is usually 0. A difference score is the difference between the first score of a pair and the second score of a pair.
H0: there is no association between the row and column variable

More precisely, if there are $I$ independent random samples of size $n_i$ from each of $I$ populations, defined by the independent variable:
• H0: the distribution of the dependent variable is the same in each of the $I$ populations
If there is one random sample of size $N$ from the total population:
• H0: the row and column variables are independent
H0: $\mu_1 = \mu_2$

Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2.
Alternative hypothesisAlternative hypothesisAlternative hypothesisAlternative hypothesisAlternative hypothesis
H1 two sided: $m \neq m_0$
H1 right sided: $m > m_0$
H1 left sided: $m < m_0$
H1 two sided: $\pi_1 \neq \pi_2$
H1 right sided: $\pi_1 > \pi_2$
H1 left sided: $\pi_1 < \pi_2$
H1 two sided: $\mu \neq \mu_0$
H1 right sided: $\mu > \mu_0$
H1 left sided: $\mu < \mu_0$
H1: there is an association between the row and column variable

More precisely, if there are $I$ independent random samples of size $n_i$ from each of $I$ populations, defined by the independent variable:
• H1: the distribution of the dependent variable is not the same in all of the $I$ populations
If there is one random sample of size $N$ from the total population:
• H1: the row and column variables are dependent
H1 two sided: $\mu_1 \neq \mu_2$
H1 right sided: $\mu_1 > \mu_2$
H1 left sided: $\mu_1 < \mu_2$
AssumptionsAssumptionsAssumptionsAssumptionsAssumptions
• The population distribution of the scores is symmetric
• Sample is a simple random sample from the population. That is, observations are independent of one another
• Sample size is large enough for $z$ to be approximately normally distributed. Rule of thumb:
• Significance test: number of successes and number of failures are each 5 or more in both sample groups
• Regular (large sample) 90%, 95%, or 99% confidence interval: number of successes and number of failures are each 10 or more in both sample groups
• Plus four 90%, 95%, or 99% confidence interval: sample sizes of both groups are 5 or more
• Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2. That is, within and between groups, observations are independent of one another
• Difference scores are normally distributed in the population
• Sample of difference scores is a simple random sample from the population of difference scores. That is, difference scores are independent of one another
• Sample size is large enough for $X^2$ to be approximately chi-squared distributed under the null hypothesis. Rule of thumb:
• 2 $\times$ 2 table: all four expected cell counts are 5 or more
• Larger than 2 $\times$ 2 tables: average of the expected cell counts is 5 or more, smallest expected cell count is 1 or more
• There are $I$ independent simple random samples from each of $I$ populations defined by the independent variable, or there is one simple random sample from the total population
• Within each population, the scores on the dependent variable are normally distributed
• Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2. That is, within and between groups, observations are independent of one another
Test statisticTest statisticTest statisticTest statisticTest statistic
Two different types of test statistics can be used, but both will result in the same test outcome. We will denote the first option the $W_1$ statistic (also known as the $T$ statistic), and the second option the $W_2$ statistic. In order to compute each of the test statistics, follow the steps below:
1. For each subject, compute the sign of the difference score $\mbox{sign}_d = \mbox{sgn}(\mbox{score} - m_0)$. The sign is 1 if the difference is larger than zero, -1 if the diffence is smaller than zero, and 0 if the difference is equal to zero.
2. For each subject, compute the absolute value of the difference score $|\mbox{score} - m_0|$.
3. Exclude subjects with a difference score of zero. This leaves us with a remaining number of difference scores equal to $N_r$.
4. Assign ranks $R_d$ to the $N_r$ remaining absolute difference scores. The smallest absolute difference score corresponds to a rank score of 1, and the largest absolute difference score corresponds to a rank score of $N_r$. If there are ties, assign them the average of the ranks they occupy.
Then compute the test statistic:

• $W_1 = \sum\, R_d^{+}$
or
$W_1 = \sum\, R_d^{-}$
That is, sum all ranks corresponding to a positive difference or sum all ranks corresponding to a negative difference. Theoratically, both definitions will result in the same test outcome. However:
• Tables with critical values for $W_1$ are usually based on the smaller of $\sum\, R_d^{+}$ and $\sum\, R_d^{-}$. So if you are using such a table, pick the smaller one.
• If you are using the normal approximation to find the $p$ value, it makes things most straightforward if you use $W_1 = \sum\, R_d^{+}$ (if you use $W_1 = \sum\, R_d^{-}$, the right and left sided alternative hypotheses 'flip').
• $W_2 = \sum\, \mbox{sign}_d \times R_d$
That is, for each remaining difference score, multiply the rank of the absolute difference score by the sign of the difference score, and then sum all of the products.
$z = \dfrac{p_1 - p_2}{\sqrt{p(1 - p)\Bigg(\dfrac{1}{n_1} + \dfrac{1}{n_2}\Bigg)}}$
Here $p_1$ is the sample proportion of successes in group 1: $\dfrac{X_1}{n_1}$, $p_2$ is the sample proportion of successes in group 2: $\dfrac{X_2}{n_2}$, $p$ is the total proportion of successes in the sample: $\dfrac{X_1 + X_2}{n_1 + n_2}$, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2.
Note: we could just as well compute $p_2 - p_1$ in the numerator, but then the left sided alternative becomes $\pi_2 < \pi_1$, and the right sided alternative becomes $\pi_2 > \pi_1.$
$t = \dfrac{\bar{y} - \mu_0}{s / \sqrt{N}}$
Here $\bar{y}$ is the sample mean of the difference scores, $\mu_0$ is the population mean of the difference scores according to the null hypothesis, $s$ is the sample standard deviation of the difference scores, and $N$ is the sample size (number of difference scores).

The denominator $s / \sqrt{N}$ is the standard error of the sampling distribution of $\bar{y}$. The $t$ value indicates how many standard errors $\bar{y}$ is removed from $\mu_0$.
$X^2 = \sum{\frac{(\mbox{observed cell count} - \mbox{expected cell count})^2}{\mbox{expected cell count}}}$
Here for each cell, the expected cell count = $\dfrac{\mbox{row total} \times \mbox{column total}}{\mbox{total sample size}}$, the observed cell count is the observed sample count in that same cell, and the sum is over all $I \times J$ cells.
$t = \dfrac{(\bar{y}_1 - \bar{y}_2) - 0}{\sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}} = \dfrac{\bar{y}_1 - \bar{y}_2}{\sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $s^2_1$ is the sample variance in group 1, $s^2_2$ is the sample variance in group 2, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis.

The denominator $\sqrt{\frac{s^2_1}{n_1} + \frac{s^2_2}{n_2}}$ is the standard error of the sampling distribution of $\bar{y}_1 - \bar{y}_2$. The $t$ value indicates how many standard errors $\bar{y}_1 - \bar{y}_2$ is removed from 0.

Note: we could just as well compute $\bar{y}_2 - \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$.
Sampling distribution of $W_1$ and of $W_2$ if H0 were trueSampling distribution of $z$ if H0 were trueSampling distribution of $t$ if H0 were trueSampling distribution of $X^2$ if H0 were trueSampling distribution of $t$ if H0 were true
Sampling distribution of $W_1$:
If $N_r$ is large, $W_1$ is approximately normally distributed with mean $\mu_{W_1}$ and standard deviation $\sigma_{W_1}$ if the null hypothesis were true. Here $$\mu_{W_1} = \frac{N_r(N_r + 1)}{4}$$ $$\sigma_{W_1} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{24}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_1 - \mu_{W_1}}{\sigma_{W_1}}$$ follows approximately the standard normal distribution if the null hypothesis were true.

Sampling distribution of $W_2$:
If $N_r$ is large, $W_2$ is approximately normally distributed with mean $0$ and standard deviation $\sigma_{W_2}$ if the null hypothesis were true. Here $$\sigma_{W_2} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{6}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_2}{\sigma_{W_2}}$$ follows approximately the standard normal distribution if the null hypothesis were true.

If $N_r$ is small, the exact distribution of $W_1$ or $W_2$ should be used.

Note: if ties are present in the data, the formula for the standard deviations $\sigma_{W_1}$ and $\sigma_{W_2}$ is more complicated.
Approximately the standard normal distribution$t$ distribution with $N - 1$ degrees of freedomApproximately the chi-squared distribution with $(I - 1) \times (J - 1)$ degrees of freedomApproximately the $t$ distribution with $k$ degrees of freedom, with $k$ equal to
$k = \dfrac{\Bigg(\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}\Bigg)^2}{\dfrac{1}{n_1 - 1} \Bigg(\dfrac{s^2_1}{n_1}\Bigg)^2 + \dfrac{1}{n_2 - 1} \Bigg(\dfrac{s^2_2}{n_2}\Bigg)^2}$
or
$k$ = the smaller of $n_1$ - 1 and $n_2$ - 1

First definition of $k$ is used by computer programs, second definition is often used for hand calculations.
Significant?Significant?Significant?Significant?Significant?
For large samples, the table for standard normal probabilities can be used:
Two sided:
Right sided:
Left sided:
Two sided:
Right sided:
Left sided:
Two sided:
Right sided:
Left sided:
• Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
• Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
Two sided:
Right sided:
Left sided:
n.a.Approximate $C\%$ confidence interval for $\pi_1 - \pi_2$$C\% confidence interval for \mun.a.Approximate C\% confidence interval for \mu_1 - \mu_2 -Regular (large sample): • (p_1 - p_2) \pm z^* \times \sqrt{\dfrac{p_1(1 - p_1)}{n_1} + \dfrac{p_2(1 - p_2)}{n_2}} where the critical value z^* is the value under the normal curve with the area C / 100 between -z^* and z^* (e.g. z^* = 1.96 for a 95% confidence interval) With plus four method: • (p_{1.plus} - p_{2.plus}) \pm z^* \times \sqrt{\dfrac{p_{1.plus}(1 - p_{1.plus})}{n_1 + 2} + \dfrac{p_{2.plus}(1 - p_{2.plus})}{n_2 + 2}} where p_{1.plus} = \dfrac{X_1 + 1}{n_1 + 2}, p_{2.plus} = \dfrac{X_2 + 1}{n_2 + 2}, and the critical value z^* is the value under the normal curve with the area C / 100 between -z^* and z^* (e.g. z^* = 1.96 for a 95% confidence interval) \bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}} where the critical value t^* is the value under the t_{N-1} distribution with the area C / 100 between -t^* and t^* (e.g. t^* = 2.086 for a 95% confidence interval when df = 20). The confidence interval for \mu can also be used as significance test. -(\bar{y}_1 - \bar{y}_2) \pm t^* \times \sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}} where the critical value t^* is the value under the t_{k} distribution with the area C / 100 between -t^* and t^* (e.g. t^* = 2.086 for a 95% confidence interval when df = 20). The confidence interval for \mu_1 - \mu_2 can also be used as significance test. n.a.n.a.Effect sizen.a.n.a. --Cohen's d: Standardized difference between the sample mean of the difference scores and \mu_0:$$d = \frac{\bar{y} - \mu_0}{s}$$Cohen's$d$indicates how many standard deviations$s$the sample mean of the difference scores$\bar{y}$is removed from$\mu_0.$-- n.a.n.a.Visual representationn.a.Visual representation --- n.a.Equivalent toEquivalent ton.a.n.a. -When testing two sided: chi-squared test for the relationship between two categorical variables, where both categorical variables have 2 levels. • One sample$t$test on the difference scores. • Repeated measures ANOVA with one dichotomous within subjects factor. -- Example contextExample contextExample contextExample contextExample context Is the median mental health score of office workers different from$m_0 = 50$?Is the proportion of smokers different between men and women? Use the normal approximation for the sampling distribution of the test statistic.Is the average difference between the mental health scores before and after an intervention different from$\mu_0 = 0$?Is there an association between economic class and gender? Is the distribution of economic class different between men and women?Is the average mental health score different between men and women? SPSSSPSSSPSSSPSSSPSS Specify the measurement level of your variable on the Variable View tab, in the column named Measure. Then go to: Analyze > Nonparametric Tests > One Sample... • On the Objective tab, choose Customize Analysis • On the Fields tab, specify the variable for which you want to compute the Wilcoxon signed-rank test • On the Settings tab, choose Customize tests and check the box for 'Compare median to hypothesized (Wilcoxon signed-rank test)'. Fill in your$m_0$in the box next to Hypothesized median • Click Run • Double click on the output table to see the full results SPSS does not have a specific option for the$z$test for the difference between two proportions. However, you can do the chi-squared test instead. The$p$value resulting from this chi-squared test is equivalent to the two sided$p$value that would have resulted from the$z$test. Go to: Analyze > Descriptive Statistics > Crosstabs... • Put your independent (grouping) variable in the box below Row(s), and your dependent variable in the box below Column(s) • Click the Statistics... button, and click on the square in front of Chi-square • Continue and click OK Analyze > Compare Means > Paired-Samples T Test... • Put the two paired variables in the boxes below Variable 1 and Variable 2 Analyze > Descriptive Statistics > Crosstabs... • Put one of your two categorical variables in the box below Row(s), and the other categorical variable in the box below Column(s) • Click the Statistics... button, and click on the square in front of Chi-square • Continue and click OK Analyze > Compare Means > Independent-Samples T Test... • Put your dependent (quantitative) variable in the box below Test Variable(s) and your independent (grouping) variable in the box below Grouping Variable • Click on the Define Groups... button. If you can't click on it, first click on the grouping variable so its background turns yellow • Fill in the value you have used to indicate your first group in the box next to Group 1, and the value you have used to indicate your second group in the box next to Group 2 • Continue and click OK JamoviJamoviJamoviJamoviJamovi T-Tests > One Sample T-Test • Put your variable in the box below Dependent Variables • Under Tests, select Wilcoxon rank • Under Hypothesis, fill in the value for$m_0$in the box next to Test Value, and select your alternative hypothesis Jamovi does not have a specific option for the$z$test for the difference between two proportions. However, you can do the chi-squared test instead. The$p$value resulting from this chi-squared test is equivalent to the two sided$p$value that would have resulted from the$z$test. Go to: Frequencies > Independent Samples -$\chi^2$test of association • Put your independent (grouping) variable in the box below Rows, and your dependent variable in the box below Columns T-Tests > Paired Samples T-Test • Put the two paired variables in the box below Paired Variables, one on the left side of the vertical line and one on the right side of the vertical line • Under Hypothesis, select your alternative hypothesis Frequencies > Independent Samples -$\chi^2\$ test of association
• Put one of your two categorical variables in the box below Rows, and the other categorical variable in the box below Columns
T-Tests > Independent Samples T-Test
• Put your dependent (quantitative) variable in the box below Dependent Variables and your independent (grouping) variable in the box below Grouping Variable
• Under Tests, select Welch's
• Under Hypothesis, select your alternative hypothesis
Practice questionsPractice questionsPractice questionsPractice questionsPractice questions