# One sample Wilcoxon signed-rank test - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

One sample Wilcoxon signed-rank test
Logistic regression
Regression (OLS)
Logistic regression
Independent variableIndependent variablesIndependent variablesIndependent variables
NoneOne or more quantitative of interval or ratio level and/or one or more categorical with independent groups, transformed into code variablesOne or more quantitative of interval or ratio level and/or one or more categorical with independent groups, transformed into code variablesOne or more quantitative of interval or ratio level and/or one or more categorical with independent groups, transformed into code variables
Dependent variableDependent variableDependent variableDependent variable
One of ordinal levelOne categorical with 2 independent groupsOne quantitative of interval or ratio levelOne categorical with 2 independent groups
Null hypothesisNull hypothesisNull hypothesisNull hypothesis
H0: $m = m_0$

Here $m$ is the population median, and $m_0$ is the population median according to the null hypothesis.
Model chi-squared test for the complete regression model:
• H0: $\beta_1 = \beta_2 = \ldots = \beta_K = 0$
Wald test for individual regression coefficient $\beta_k$:
• H0: $\beta_k = 0$
or in terms of odds ratio:
• H0: $e^{\beta_k} = 1$
Likelihood ratio chi-squared test for individual regression coefficient $\beta_k$:
• H0: $\beta_k = 0$
or in terms of odds ratio:
• H0: $e^{\beta_k} = 1$
in the regression equation $\ln \big(\frac{\pi_{y = 1}}{1 - \pi_{y = 1}} \big) = \beta_0 + \beta_1 \times x_1 + \beta_2 \times x_2 + \ldots + \beta_K \times x_K$. Here $x_i$ represents independent variable $i$, $\beta_i$ is the regression weight for independent variable $x_i$, and $\pi_{y = 1}$ represents the true probability that the dependent variable $y = 1$ (or equivalently, the proportion of $y = 1$ in the population) given the scores on the independent variables.
$F$ test for the complete regression model:
• H0: $\beta_1 = \beta_2 = \ldots = \beta_K = 0$
or equivalenty
• H0: the variance explained by all the independent variables together (the complete model) is 0 in the population, i.e. $\rho^2 = 0$
$t$ test for individual regression coefficient $\beta_k$:
• H0: $\beta_k = 0$
in the regression equation $\mu_y = \beta_0 + \beta_1 \times x_1 + \beta_2 \times x_2 + \ldots + \beta_K \times x_K$. Here $x_i$ represents independent variable $i$, $\beta_i$ is the regression weight for independent variable $x_i$, and $\mu_y$ represents the population mean of the dependent variable $y$ given the scores on the independent variables.
Model chi-squared test for the complete regression model:
• H0: $\beta_1 = \beta_2 = \ldots = \beta_K = 0$
Wald test for individual regression coefficient $\beta_k$:
• H0: $\beta_k = 0$
or in terms of odds ratio:
• H0: $e^{\beta_k} = 1$
Likelihood ratio chi-squared test for individual regression coefficient $\beta_k$:
• H0: $\beta_k = 0$
or in terms of odds ratio:
• H0: $e^{\beta_k} = 1$
in the regression equation $\ln \big(\frac{\pi_{y = 1}}{1 - \pi_{y = 1}} \big) = \beta_0 + \beta_1 \times x_1 + \beta_2 \times x_2 + \ldots + \beta_K \times x_K$. Here $x_i$ represents independent variable $i$, $\beta_i$ is the regression weight for independent variable $x_i$, and $\pi_{y = 1}$ represents the true probability that the dependent variable $y = 1$ (or equivalently, the proportion of $y = 1$ in the population) given the scores on the independent variables.
Alternative hypothesisAlternative hypothesisAlternative hypothesisAlternative hypothesis
H1 two sided: $m \neq m_0$
H1 right sided: $m > m_0$
H1 left sided: $m < m_0$
Model chi-squared test for the complete regression model:
• H1: not all population regression coefficients are 0
Wald test for individual regression coefficient $\beta_k$:
• H1: $\beta_k \neq 0$
or in terms of odds ratio:
• H1: $e^{\beta_k} \neq 1$
If defined as Wald $= \dfrac{b_k}{SE_{b_k}}$ (see 'Test statistic'), also one sided alternatives can be tested:
• H1 right sided: $\beta_k > 0$
• H1 left sided: $\beta_k < 0$
Likelihood ratio chi-squared test for individual regression coefficient $\beta_k$:
• H1: $\beta_k \neq 0$
or in terms of odds ratio:
• H1: $e^{\beta_k} \neq 1$
$F$ test for the complete regression model:
• H1: not all population regression coefficients are 0
or equivalenty
• H1: the variance explained by all the independent variables together (the complete model) is larger than 0 in the population, i.e. $\rho^2 > 0$
$t$ test for individual regression coefficient $\beta_k$:
• H1 two sided: $\beta_k \neq 0$
• H1 right sided: $\beta_k > 0$
• H1 left sided: $\beta_k < 0$
Model chi-squared test for the complete regression model:
• H1: not all population regression coefficients are 0
Wald test for individual regression coefficient $\beta_k$:
• H1: $\beta_k \neq 0$
or in terms of odds ratio:
• H1: $e^{\beta_k} \neq 1$
If defined as Wald $= \dfrac{b_k}{SE_{b_k}}$ (see 'Test statistic'), also one sided alternatives can be tested:
• H1 right sided: $\beta_k > 0$
• H1 left sided: $\beta_k < 0$
Likelihood ratio chi-squared test for individual regression coefficient $\beta_k$:
• H1: $\beta_k \neq 0$
or in terms of odds ratio:
• H1: $e^{\beta_k} \neq 1$
AssumptionsAssumptionsAssumptionsAssumptions
• The population distribution of the scores is symmetric
• Sample is a simple random sample from the population. That is, observations are independent of one another
• In the population, the relationship between the independent variables and the log odds $\ln (\frac{\pi_{y=1}}{1 - \pi_{y=1}})$ is linear
• The residuals are independent of one another
• Variables are measured without error
Also pay attention to:
• Multicollinearity
• Outliers
• In the population, the residuals are normally distributed at each combination of values of the independent variables
• In the population, the standard deviation $\sigma$ of the residuals is the same for each combination of values of the independent variables (homoscedasticity)
• In the population, the relationship between the independent variables and the mean of the dependent variable $\mu_y$ is linear. If this linearity assumption holds, the mean of the residuals is 0 for each combination of values of the independent variables
• The residuals are independent of one another
• Variables are measured without error
Also pay attention to:
• Multicollinearity
• Outliers
• In the population, the relationship between the independent variables and the log odds $\ln (\frac{\pi_{y=1}}{1 - \pi_{y=1}})$ is linear
• The residuals are independent of one another
• Variables are measured without error
Also pay attention to:
• Multicollinearity
• Outliers
Test statisticTest statisticTest statisticTest statistic
Two different types of test statistics can be used, but both will result in the same test outcome. We will denote the first option the $W_1$ statistic (also known as the $T$ statistic), and the second option the $W_2$ statistic. In order to compute each of the test statistics, follow the steps below:
1. For each subject, compute the sign of the difference score $\mbox{sign}_d = \mbox{sgn}(\mbox{score} - m_0)$. The sign is 1 if the difference is larger than zero, -1 if the diffence is smaller than zero, and 0 if the difference is equal to zero.
2. For each subject, compute the absolute value of the difference score $|\mbox{score} - m_0|$.
3. Exclude subjects with a difference score of zero. This leaves us with a remaining number of difference scores equal to $N_r$.
4. Assign ranks $R_d$ to the $N_r$ remaining absolute difference scores. The smallest absolute difference score corresponds to a rank score of 1, and the largest absolute difference score corresponds to a rank score of $N_r$. If there are ties, assign them the average of the ranks they occupy.
Then compute the test statistic:

• $W_1 = \sum\, R_d^{+}$
or
$W_1 = \sum\, R_d^{-}$
That is, sum all ranks corresponding to a positive difference or sum all ranks corresponding to a negative difference. Theoratically, both definitions will result in the same test outcome. However:
• Tables with critical values for $W_1$ are usually based on the smaller of $\sum\, R_d^{+}$ and $\sum\, R_d^{-}$. So if you are using such a table, pick the smaller one.
• If you are using the normal approximation to find the $p$ value, it makes things most straightforward if you use $W_1 = \sum\, R_d^{+}$ (if you use $W_1 = \sum\, R_d^{-}$, the right and left sided alternative hypotheses 'flip').
• $W_2 = \sum\, \mbox{sign}_d \times R_d$
That is, for each remaining difference score, multiply the rank of the absolute difference score by the sign of the difference score, and then sum all of the products.
Model chi-squared test for the complete regression model:
• $X^2 = D_{null} - D_K = \mbox{null deviance} - \mbox{model deviance}$
$D_{null}$, the null deviance, is conceptually similar to the total variance of the dependent variable in OLS regression analysis. $D_K$, the model deviance, is conceptually similar to the residual variance in OLS regression analysis.
Wald test for individual $\beta_k$:
The wald statistic can be defined in two ways:
• Wald $= \dfrac{b_k^2}{SE^2_{b_k}}$
• Wald $= \dfrac{b_k}{SE_{b_k}}$
SPSS uses the first definition.

Likelihood ratio chi-squared test for individual $\beta_k$:
• $X^2 = D_{K-1} - D_K$
$D_{K-1}$ is the model deviance, where independent variable $k$ is excluded from the model. $D_{K}$ is the model deviance, where independent variable $k$ is included in the model.
$F$ test for the complete regression model:
• \begin{aligned}[t] F &= \dfrac{\sum (\hat{y}_j - \bar{y})^2 / K}{\sum (y_j - \hat{y}_j)^2 / (N - K - 1)}\\ &= \dfrac{\mbox{sum of squares model} / \mbox{degrees of freedom model}}{\mbox{sum of squares error} / \mbox{degrees of freedom error}}\\ &= \dfrac{\mbox{mean square model}}{\mbox{mean square error}} \end{aligned}
where $\hat{y}_j$ is the predicted score on the dependent variable $y$ of subject $j$, $\bar{y}$ is the mean of $y$, $y_j$ is the score on $y$ of subject $j$, $N$ is the total sample size, and $K$ is the number of independent variables.
$t$ test for individual $\beta_k$:
• $t = \dfrac{b_k}{SE_{b_k}}$
• If only one independent variable:
$SE_{b_1} = \dfrac{\sqrt{\sum (y_j - \hat{y}_j)^2 / (N - 2)}}{\sqrt{\sum (x_j - \bar{x})^2}} = \dfrac{s}{\sqrt{\sum (x_j - \bar{x})^2}}$
with $s$ the sample standard deviation of the residuals, $x_j$ the score of subject $j$ on the independent variable $x$, and $\bar{x}$ the mean of $x$. For models with more than one independent variable, computing $SE_{b_k}$ is more complicated.
Note 1: mean square model is also known as mean square regression, and mean square error is also known as mean square residual.
Note 2: if there is only one independent variable in the model ($K = 1$), the $F$ test for the complete regression model is equivalent to the two sided $t$ test for $\beta_1.$
Model chi-squared test for the complete regression model:
• $X^2 = D_{null} - D_K = \mbox{null deviance} - \mbox{model deviance}$
$D_{null}$, the null deviance, is conceptually similar to the total variance of the dependent variable in OLS regression analysis. $D_K$, the model deviance, is conceptually similar to the residual variance in OLS regression analysis.
Wald test for individual $\beta_k$:
The wald statistic can be defined in two ways:
• Wald $= \dfrac{b_k^2}{SE^2_{b_k}}$
• Wald $= \dfrac{b_k}{SE_{b_k}}$
SPSS uses the first definition.

Likelihood ratio chi-squared test for individual $\beta_k$:
• $X^2 = D_{K-1} - D_K$
$D_{K-1}$ is the model deviance, where independent variable $k$ is excluded from the model. $D_{K}$ is the model deviance, where independent variable $k$ is included in the model.
n.a.n.a.Sample standard deviation of the residuals $s$n.a.
--\begin{aligned} s &= \sqrt{\dfrac{\sum (y_j - \hat{y}_j)^2}{N - K - 1}}\\ &= \sqrt{\dfrac{\mbox{sum of squares error}}{\mbox{degrees of freedom error}}}\\ &= \sqrt{\mbox{mean square error}} \end{aligned}-
Sampling distribution of $W_1$ and of $W_2$ if H0 were trueSampling distribution of $X^2$ and of the Wald statistic if H0 were trueSampling distribution of $F$ and of $t$ if H0 were trueSampling distribution of $X^2$ and of the Wald statistic if H0 were true
Sampling distribution of $W_1$:
If $N_r$ is large, $W_1$ is approximately normally distributed with mean $\mu_{W_1}$ and standard deviation $\sigma_{W_1}$ if the null hypothesis were true. Here $$\mu_{W_1} = \frac{N_r(N_r + 1)}{4}$$ $$\sigma_{W_1} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{24}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_1 - \mu_{W_1}}{\sigma_{W_1}}$$ follows approximately the standard normal distribution if the null hypothesis were true.

Sampling distribution of $W_2$:
If $N_r$ is large, $W_2$ is approximately normally distributed with mean $0$ and standard deviation $\sigma_{W_2}$ if the null hypothesis were true. Here $$\sigma_{W_2} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{6}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_2}{\sigma_{W_2}}$$ follows approximately the standard normal distribution if the null hypothesis were true.

If $N_r$ is small, the exact distribution of $W_1$ or $W_2$ should be used.

Note: if ties are present in the data, the formula for the standard deviations $\sigma_{W_1}$ and $\sigma_{W_2}$ is more complicated.
Sampling distribution of $X^2$, as computed in the model chi-squared test for the complete model:
• chi-squared distribution with $K$ (number of independent variables) degrees of freedom
Sampling distribution of the Wald statistic:
• If defined as Wald $= \dfrac{b_k^2}{SE^2_{b_k}}$: approximately the chi-squared distribution with 1 degree of freedom
• If defined as Wald $= \dfrac{b_k}{SE_{b_k}}$: approximately the standard normal distribution
Sampling distribution of $X^2$, as computed in the likelihood ratio chi-squared test for individual $\beta_k$:
• chi-squared distribution with 1 degree of freedom
Sampling distribution of $F$:
• $F$ distribution with $K$ (df model, numerator) and $N - K - 1$ (df error, denominator) degrees of freedom
Sampling distribution of $t$:
• $t$ distribution with $N - K - 1$ (df error) degrees of freedom
Sampling distribution of $X^2$, as computed in the model chi-squared test for the complete model:
• chi-squared distribution with $K$ (number of independent variables) degrees of freedom
Sampling distribution of the Wald statistic:
• If defined as Wald $= \dfrac{b_k^2}{SE^2_{b_k}}$: approximately the chi-squared distribution with 1 degree of freedom
• If defined as Wald $= \dfrac{b_k}{SE_{b_k}}$: approximately the standard normal distribution
Sampling distribution of $X^2$, as computed in the likelihood ratio chi-squared test for individual $\beta_k$:
• chi-squared distribution with 1 degree of freedom
Significant?Significant?Significant?Significant?
For large samples, the table for standard normal probabilities can be used:
Two sided:
Right sided:
Left sided:
For the model chi-squared test for the complete regression model and likelihood ratio chi-squared test for individual $\beta_k$:
• Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
• Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
For the Wald test:
• If defined as Wald $= \dfrac{b_k^2}{SE^2_{b_k}}$: same procedure as for the chi-squared tests. Wald can be interpret as $X^2$
• If defined as Wald $= \dfrac{b_k}{SE_{b_k}}$: same procedure as for any $z$ test. Wald can be interpreted as $z$.
$F$ test:
• Check if $F$ observed in sample is equal to or larger than critical value $F^*$ or
• Find $p$ value corresponding to observed $F$ and check if it is equal to or smaller than $\alpha$
$t$ Test two sided:
$t$ Test right sided:
$t$ Test left sided:
For the model chi-squared test for the complete regression model and likelihood ratio chi-squared test for individual $\beta_k$:
• Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
• Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
For the Wald test:
• If defined as Wald $= \dfrac{b_k^2}{SE^2_{b_k}}$: same procedure as for the chi-squared tests. Wald can be interpret as $X^2$
• If defined as Wald $= \dfrac{b_k}{SE_{b_k}}$: same procedure as for any $z$ test. Wald can be interpreted as $z$.
n.a.Wald-type approximate $C\%$ confidence interval for \beta_k$$C\% confidence interval for \beta_k and for \mu_y, C\% prediction interval for y_{new}Wald-type approximate C\% confidence interval for \beta_k -b_k \pm z^* \times SE_{b_k} where the critical value z^* is the value under the normal curve with the area C / 100 between -z^* and z^* (e.g. z^* = 1.96 for a 95% confidence interval). Confidence interval for \beta_k: • b_k \pm t^* \times SE_{b_k} • If only one independent variable: SE_{b_1} = \dfrac{\sqrt{\sum (y_j - \hat{y}_j)^2 / (N - 2)}}{\sqrt{\sum (x_j - \bar{x})^2}} = \dfrac{s}{\sqrt{\sum (x_j - \bar{x})^2}} Confidence interval for \mu_y, the population mean of y given the values on the independent variables: • \hat{y} \pm t^* \times SE_{\hat{y}} • If only one independent variable: SE_{\hat{y}} = s \sqrt{\dfrac{1}{N} + \dfrac{(x^* - \bar{x})^2}{\sum (x_j - \bar{x})^2}} Prediction interval for y_{new}, the score on y of a future respondent: • \hat{y} \pm t^* \times SE_{y_{new}} • If only one independent variable: SE_{y_{new}} = s \sqrt{1 + \dfrac{1}{N} + \dfrac{(x^* - \bar{x})^2}{\sum (x_j - \bar{x})^2}} In all formulas, the critical value t^* is the value under the t_{N - K - 1} distribution with the area C / 100 between -t^* and t^* (e.g. t^* = 2.086 for a 95% confidence interval when df = 20). b_k \pm z^* \times SE_{b_k} where the critical value z^* is the value under the normal curve with the area C / 100 between -z^* and z^* (e.g. z^* = 1.96 for a 95% confidence interval). n.a.Goodness of fit measure R^2_LEffect sizeGoodness of fit measure R^2_L -R^2_L = \dfrac{D_{null} - D_K}{D_{null}} There are several other goodness of fit measures in logistic regression. In logistic regression, there is no single agreed upon measure of goodness of fit. Complete model: • Proportion variance explained R^2: Proportion variance of the dependent variable y explained by the sample regression equation (the independent variables):$$ \begin{align} R^2 &= \dfrac{\sum (\hat{y}_j - \bar{y})^2}{\sum (y_j - \bar{y})^2}\\ &= \dfrac{\mbox{sum of squares model}}{\mbox{sum of squares total}}\\ &= 1 - \dfrac{\mbox{sum of squares error}}{\mbox{sum of squares total}}\\ &= r(y, \hat{y})^2 \end{align} $$R^2 is the proportion variance explained in the sample by the sample regression equation. It is a positively biased estimate of the proportion variance explained in the population by the population regression equation, \rho^2. If there is only one independent variable, R^2 = r^2: the correlation between the independent variable x and dependent variable y squared. • Wherry's R^2 / shrunken R^2: Corrects for the positive bias in R^2 and is equal to$$R^2_W = 1 - \frac{N - 1}{N - K - 1}(1 - R^2)$$R^2_W is a less biased estimate than R^2 of the proportion variance explained in the population by the population regression equation, \rho^2. • Stein's R^2: Estimates the proportion of variance in y that we expect the current sample regression equation to explain in a different sample drawn from the same population. It is equal to$$R^2_S = 1 - \frac{(N - 1)(N - 2)(N + 1)}{(N - K - 1)(N - K - 2)(N)}(1 - R^2)$Per independent variable: • Correlation squared$r^2_k$: the proportion of the total variance in the dependent variable$y$that is explained by the independent variable$x_k$, not corrected for the other independent variables in the model • Semi-partial correlation squared$sr^2_k$: the proportion of the total variance in the dependent variable$y$that is uniquely explained by the independent variable$x_k$, beyond the part that is already explained by the other independent variables in the model • Partial correlation squared$pr^2_k$: the proportion of the variance in the dependent variable$y$not explained by the other independent variables, that is uniquely explained by the independent variable$x_kR^2_L = \dfrac{D_{null} - D_K}{D_{null}}$There are several other goodness of fit measures in logistic regression. In logistic regression, there is no single agreed upon measure of goodness of fit. n.a.n.a.Visual representationn.a. --Regression equations with: - n.a.n.a.ANOVA tablen.a. -- - Example contextExample contextExample contextExample context Is the median mental health score of office workers different from$m_0 = 50$?Can body mass index, stress level, and gender predict whether people get diagnosed with diabetes?Can mental health be predicted from fysical health, economic class, and gender?Can body mass index, stress level, and gender predict whether people get diagnosed with diabetes? SPSSSPSSSPSSSPSS Specify the measurement level of your variable on the Variable View tab, in the column named Measure. Then go to: Analyze > Nonparametric Tests > One Sample... • On the Objective tab, choose Customize Analysis • On the Fields tab, specify the variable for which you want to compute the Wilcoxon signed-rank test • On the Settings tab, choose Customize tests and check the box for 'Compare median to hypothesized (Wilcoxon signed-rank test)'. Fill in your$m_0$in the box next to Hypothesized median • Click Run • Double click on the output table to see the full results Analyze > Regression > Binary Logistic... • Put your dependent variable in the box below Dependent and your independent (predictor) variables in the box below Covariate(s) Analyze > Regression > Linear... • Put your dependent variable in the box below Dependent and your independent (predictor) variables in the box below Independent(s) Analyze > Regression > Binary Logistic... • Put your dependent variable in the box below Dependent and your independent (predictor) variables in the box below Covariate(s) JamoviJamoviJamoviJamovi T-Tests > One Sample T-Test • Put your variable in the box below Dependent Variables • Under Tests, select Wilcoxon rank • Under Hypothesis, fill in the value for$m_0\$ in the box next to Test Value, and select your alternative hypothesis
Regression > 2 Outcomes - Binomial
• Put your dependent variable in the box below Dependent Variable and your independent variables of interval/ratio level in the box below Covariates
• If you also have code (dummy) variables as independent variables, you can put these in the box below Covariates as well
• Instead of transforming your categorical independent variable(s) into code variables, you can also put the untransformed categorical independent variables in the box below Factors. Jamovi will then make the code variables for you 'behind the scenes'
Regression > Linear Regression
• Put your dependent variable in the box below Dependent Variable and your independent variables of interval/ratio level in the box below Covariates
• If you also have code (dummy) variables as independent variables, you can put these in the box below Covariates as well
• Instead of transforming your categorical independent variable(s) into code variables, you can also put the untransformed categorical independent variables in the box below Factors. Jamovi will then make the code variables for you 'behind the scenes'
Regression > 2 Outcomes - Binomial
• Put your dependent variable in the box below Dependent Variable and your independent variables of interval/ratio level in the box below Covariates
• If you also have code (dummy) variables as independent variables, you can put these in the box below Covariates as well
• Instead of transforming your categorical independent variable(s) into code variables, you can also put the untransformed categorical independent variables in the box below Factors. Jamovi will then make the code variables for you 'behind the scenes'
Practice questionsPractice questionsPractice questionsPractice questions