# One sample Wilcoxon signed-rank test - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons (max. of 3) by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

One sample Wilcoxon signed-rank test | Goodness of fit test | Goodness of fit test |
You cannot compare more than 3 methods |
---|---|---|---|

Independent variable | Independent variable | Independent variable | |

None | None | None | |

Dependent variable | Dependent variable | Dependent variable | |

One of ordinal level | One categorical with $J$ independent groups ($J \geqslant 2$) | One categorical with $J$ independent groups ($J \geqslant 2$) | |

Null hypothesis | Null hypothesis | Null hypothesis | |

H_{0}: $m = m_0$
Here $m$ is the population median, and $m_0$ is the population median according to the null hypothesis. | - H
_{0}: the population proportions in each of the $J$ conditions are $\pi_1$, $\pi_2$, $\ldots$, $\pi_J$
- H
_{0}: the probability of drawing an observation from condition 1 is $\pi_1$, the probability of drawing an observation from condition 2 is $\pi_2$, $\ldots$, the probability of drawing an observation from condition $J$ is $\pi_J$
| - H
_{0}: the population proportions in each of the $J$ conditions are $\pi_1$, $\pi_2$, $\ldots$, $\pi_J$
- H
_{0}: the probability of drawing an observation from condition 1 is $\pi_1$, the probability of drawing an observation from condition 2 is $\pi_2$, $\ldots$, the probability of drawing an observation from condition $J$ is $\pi_J$
| |

Alternative hypothesis | Alternative hypothesis | Alternative hypothesis | |

H_{1} two sided: $m \neq m_0$H _{1} right sided: $m > m_0$H _{1} left sided: $m < m_0$
| - H
_{1}: the population proportions are not all as specified under the null hypothesis
- H
_{1}: the probabilities of drawing an observation from each of the conditions are not all as specified under the null hypothesis
| - H
_{1}: the population proportions are not all as specified under the null hypothesis
- H
_{1}: the probabilities of drawing an observation from each of the conditions are not all as specified under the null hypothesis
| |

Assumptions | Assumptions | Assumptions | |

- The population distribution of the scores is symmetric
- Sample is a simple random sample from the population. That is, observations are independent of one another
| - Sample size is large enough for $X^2$ to be approximately chi-squared distributed. Rule of thumb: all $J$ expected cell counts are 5 or more
- Sample is a simple random sample from the population. That is, observations are independent of one another
| - Sample size is large enough for $X^2$ to be approximately chi-squared distributed. Rule of thumb: all $J$ expected cell counts are 5 or more
- Sample is a simple random sample from the population. That is, observations are independent of one another
| |

Test statistic | Test statistic | Test statistic | |

Two different types of test statistics can be used, but both will result in the same test outcome. We will denote the first option the $W_1$ statistic (also known as the $T$ statistic), and the second option the $W_2$ statistic.
In order to compute each of the test statistics, follow the steps below:
- For each subject, compute the sign of the difference score $\mbox{sign}_d = \mbox{sgn}(\mbox{score} - m_0)$. The sign is 1 if the difference is larger than zero, -1 if the diffence is smaller than zero, and 0 if the difference is equal to zero.
- For each subject, compute the absolute value of the difference score $|\mbox{score} - m_0|$.
- Exclude subjects with a difference score of zero. This leaves us with a remaining number of difference scores equal to $N_r$.
- Assign ranks $R_d$ to the $N_r$ remaining
*absolute*difference scores. The smallest absolute difference score corresponds to a rank score of 1, and the largest absolute difference score corresponds to a rank score of $N_r$. If there are ties, assign them the average of the ranks they occupy.
- $W_1 = \sum\, R_d^{+}$
or $W_1 = \sum\, R_d^{-}$ That is, sum all ranks corresponding to a positive difference or sum all ranks corresponding to a negative difference. Theoratically, both definitions will result in the same test outcome. However:- Tables with critical values for $W_1$ are usually based on the smaller of $\sum\, R_d^{+}$ and $\sum\, R_d^{-}$. So if you are using such a table, pick the smaller one.
- If you are using the normal approximation to find the $p$ value, it makes things most straightforward if you use $W_1 = \sum\, R_d^{+}$ (if you use $W_1 = \sum\, R_d^{-}$, the right and left sided alternative hypotheses 'flip').
- $W_2 = \sum\, \mbox{sign}_d \times R_d$
That is, for each remaining difference score, multiply the rank of the absolute difference score by the sign of the difference score, and then sum all of the products.
| $X^2 = \sum{\frac{(\mbox{observed cell count} - \mbox{expected cell count})^2}{\mbox{expected cell count}}}$
Here the expected cell count for one cell = $N \times \pi_j$, the observed cell count is the observed sample count in that same cell, and the sum is over all $J$ cells. | $X^2 = \sum{\frac{(\mbox{observed cell count} - \mbox{expected cell count})^2}{\mbox{expected cell count}}}$
Here the expected cell count for one cell = $N \times \pi_j$, the observed cell count is the observed sample count in that same cell, and the sum is over all $J$ cells. | |

Sampling distribution of $W_1$ and of $W_2$ if H_{0} were true | Sampling distribution of $X^2$ if H_{0} were true | Sampling distribution of $X^2$ if H_{0} were true | |

Sampling distribution of $W_1$:
If $N_r$ is large, $W_1$ is approximately normally distributed with mean $\mu_{W_1}$ and standard deviation $\sigma_{W_1}$ if the null hypothesis were true. Here $$\mu_{W_1} = \frac{N_r(N_r + 1)}{4}$$ $$\sigma_{W_1} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{24}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_1 - \mu_{W_1}}{\sigma_{W_1}}$$ follows approximately the standard normal distribution if the null hypothesis were true. Sampling distribution of $W_2$: If $N_r$ is large, $W_2$ is approximately normally distributed with mean $0$ and standard deviation $\sigma_{W_2}$ if the null hypothesis were true. Here $$\sigma_{W_2} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{6}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_2}{\sigma_{W_2}}$$ follows approximately the standard normal distribution if the null hypothesis were true. If $N_r$ is small, the exact distribution of $W_1$ or $W_2$ should be used. Note: if ties are present in the data, the formula for the standard deviations $\sigma_{W_1}$ and $\sigma_{W_2}$ is more complicated. | Approximately the chi-squared distribution with $J - 1$ degrees of freedom | Approximately the chi-squared distribution with $J - 1$ degrees of freedom | |

Significant? | Significant? | Significant? | |

For large samples, the table for standard normal probabilities can be used: Two sided: - Check if $z$ observed in sample is at least as extreme as critical value $z^*$ or
- Find two sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
- Check if $z$ observed in sample is equal to or larger than critical value $z^*$ or
- Find right sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
- Check if $z$ observed in sample is equal to or smaller than critical value $z^*$ or
- Find left sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
| - Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
- Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
| - Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
- Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
| |

Example context | Example context | Example context | |

Is the median mental health score of office workers different from $m_0 = 50$? | Is the proportion of people with a low, moderate, and high social economic status in the population different from $\pi_{low} = 0.2,$ $\pi_{moderate} = 0.6,$ and $\pi_{high} = 0.2$? | Is the proportion of people with a low, moderate, and high social economic status in the population different from $\pi_{low} = 0.2,$ $\pi_{moderate} = 0.6,$ and $\pi_{high} = 0.2$? | |

SPSS | SPSS | SPSS | |

Specify the measurement level of your variable on the Variable View tab, in the column named Measure. Then go to:
Analyze > Nonparametric Tests > One Sample... - On the Objective tab, choose Customize Analysis
- On the Fields tab, specify the variable for which you want to compute the Wilcoxon signed-rank test
- On the Settings tab, choose Customize tests and check the box for 'Compare median to hypothesized (Wilcoxon signed-rank test)'. Fill in your $m_0$ in the box next to Hypothesized median
- Click Run
- Double click on the output table to see the full results
| Analyze > Nonparametric Tests > Legacy Dialogs > Chi-square...
- Put your categorical variable in the box below Test Variable List
- Fill in the population proportions / probabilities according to $H_0$ in the box below Expected Values. If $H_0$ states that they are all equal, just pick 'All categories equal' (default)
| Analyze > Nonparametric Tests > Legacy Dialogs > Chi-square...
- Put your categorical variable in the box below Test Variable List
- Fill in the population proportions / probabilities according to $H_0$ in the box below Expected Values. If $H_0$ states that they are all equal, just pick 'All categories equal' (default)
| |

Jamovi | Jamovi | Jamovi | |

T-Tests > One Sample T-Test
- Put your variable in the box below Dependent Variables
- Under Tests, select Wilcoxon rank
- Under Hypothesis, fill in the value for $m_0$ in the box next to Test Value, and select your alternative hypothesis
| Frequencies > N Outcomes - $\chi^2$ Goodness of fit
- Put your categorical variable in the box below Variable
- Click on Expected Proportions and fill in the population proportions / probabilities according to $H_0$ in the boxes below Ratio. If $H_0$ states that they are all equal, you can leave the ratios equal to the default values (1)
| Frequencies > N Outcomes - $\chi^2$ Goodness of fit
- Put your categorical variable in the box below Variable
- Click on Expected Proportions and fill in the population proportions / probabilities according to $H_0$ in the boxes below Ratio. If $H_0$ states that they are all equal, you can leave the ratios equal to the default values (1)
| |

Practice questions | Practice questions | Practice questions | |