One sample Wilcoxon signed-rank test - overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table
One sample Wilcoxon signed-rank test | Binomial test for a single proportion | Friedman test |
|
---|---|---|---|
Independent variable | Independent variable | Independent/grouping variable | |
None | None | One within subject factor ($\geq 2$ related groups) | |
Dependent variable | Dependent variable | Dependent variable | |
One of ordinal level | One categorical with 2 independent groups | One of ordinal level | |
Null hypothesis | Null hypothesis | Null hypothesis | |
H0: $m = m_0$
Here $m$ is the population median, and $m_0$ is the population median according to the null hypothesis. | H0: $\pi = \pi_0$
Here $\pi$ is the population proportion of 'successes', and $\pi_0$ is the population proportion of successes according to the null hypothesis. | H0: the population scores in any of the related groups are not systematically higher or lower than the population scores in any of the other related groups
Usually the related groups are the different measurement points. Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher. | |
Alternative hypothesis | Alternative hypothesis | Alternative hypothesis | |
H1 two sided: $m \neq m_0$ H1 right sided: $m > m_0$ H1 left sided: $m < m_0$ | H1 two sided: $\pi \neq \pi_0$ H1 right sided: $\pi > \pi_0$ H1 left sided: $\pi < \pi_0$ | H1: the population scores in some of the related groups are systematically higher or lower than the population scores in other related groups | |
Assumptions | Assumptions | Assumptions | |
|
|
| |
Test statistic | Test statistic | Test statistic | |
Two different types of test statistics can be used, but both will result in the same test outcome. We will denote the first option the $W_1$ statistic (also known as the $T$ statistic), and the second option the $W_2$ statistic.
In order to compute each of the test statistics, follow the steps below:
| $X$ = number of successes in the sample | $Q = \dfrac{12}{N \times k(k + 1)} \sum R^2_i - 3 \times N(k + 1)$
Here $N$ is the number of 'blocks' (usually the subjects - so if you have 4 repeated measurements for 60 subjects, $N$ equals 60), $k$ is the number of related groups (usually the number of repeated measurements), and $R_i$ is the sum of ranks in group $i$. Remember that multiplication precedes addition, so first compute $\frac{12}{N \times k(k + 1)} \times \sum R^2_i$ and then subtract $3 \times N(k + 1)$. Note: if ties are present in the data, the formula for $Q$ is more complicated. | |
Sampling distribution of $W_1$ and of $W_2$ if H0 were true | Sampling distribution of $X$ if H0 were true | Sampling distribution of $Q$ if H0 were true | |
Sampling distribution of $W_1$:
If $N_r$ is large, $W_1$ is approximately normally distributed with mean $\mu_{W_1}$ and standard deviation $\sigma_{W_1}$ if the null hypothesis were true. Here $$\mu_{W_1} = \frac{N_r(N_r + 1)}{4}$$ $$\sigma_{W_1} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{24}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_1 - \mu_{W_1}}{\sigma_{W_1}}$$ follows approximately the standard normal distribution if the null hypothesis were true. Sampling distribution of $W_2$: If $N_r$ is large, $W_2$ is approximately normally distributed with mean $0$ and standard deviation $\sigma_{W_2}$ if the null hypothesis were true. Here $$\sigma_{W_2} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{6}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_2}{\sigma_{W_2}}$$ follows approximately the standard normal distribution if the null hypothesis were true. If $N_r$ is small, the exact distribution of $W_1$ or $W_2$ should be used. Note: if ties are present in the data, the formula for the standard deviations $\sigma_{W_1}$ and $\sigma_{W_2}$ is more complicated. | Binomial($n$, $P$) distribution.
Here $n = N$ (total sample size), and $P = \pi_0$ (population proportion according to the null hypothesis). | If the number of blocks $N$ is large, approximately the chi-squared distribution with $k - 1$ degrees of freedom.
For small samples, the exact distribution of $Q$ should be used. | |
Significant? | Significant? | Significant? | |
For large samples, the table for standard normal probabilities can be used: Two sided:
| Two sided:
| If the number of blocks $N$ is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
| |
Example context | Example context | Example context | |
Is the median mental health score of office workers different from $m_0 = 50$? | Is the proportion of smokers amongst office workers different from $\pi_0 = 0.2$? | Is there a difference in depression level between measurement point 1 (pre-intervention), measurement point 2 (1 week post-intervention), and measurement point 3 (6 weeks post-intervention)? | |
SPSS | SPSS | SPSS | |
Specify the measurement level of your variable on the Variable View tab, in the column named Measure. Then go to:
Analyze > Nonparametric Tests > One Sample...
| Analyze > Nonparametric Tests > Legacy Dialogs > Binomial...
| Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
| |
Jamovi | Jamovi | Jamovi | |
T-Tests > One Sample T-Test
| Frequencies > 2 Outcomes - Binomial test
| ANOVA > Repeated Measures ANOVA - Friedman
| |
Practice questions | Practice questions | Practice questions | |