One sample z test for the mean  overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
One sample $z$ test for the mean  MannWhitneyWilcoxon test 


Independent variable  Independent/grouping variable  
None  One categorical with 2 independent groups  
Dependent variable  Dependent variable  
One quantitative of interval or ratio level  One of ordinal level  
Null hypothesis  Null hypothesis  
H_{0}: $\mu = \mu_0$
Here $\mu$ is the population mean, and $\mu_0$ is the population mean according to the null hypothesis.  If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in both populations:
Formulation 1:
 
Alternative hypothesis  Alternative hypothesis  
H_{1} two sided: $\mu \neq \mu_0$ H_{1} right sided: $\mu > \mu_0$ H_{1} left sided: $\mu < \mu_0$  If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in both populations:
Formulation 1:
 
Assumptions  Assumptions  

 
Test statistic  Test statistic  
$z = \dfrac{\bar{y}  \mu_0}{\sigma / \sqrt{N}}$
Here $\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to the null hypothesis, $\sigma$ is the population standard deviation, and $N$ is the sample size. The denominator $\sigma / \sqrt{N}$ is the standard deviation of the sampling distribution of $\bar{y}$. The $z$ value indicates how many of these standard deviations $\bar{y}$ is removed from $\mu_0$.  Two different types of test statistics can be used; both will result in the same test outcome. The first is the Wilcoxon rank sum statistic $W$:
Note: we could just as well base W and U on group 2. This would only 'flip' the right and left sided alternative hypotheses. Also, tables with critical values for $U$ are often based on the smaller of $U$ for group 1 and for group 2.  
Sampling distribution of $z$ if H_{0} were true  Sampling distribution of $W$ and of $U$ if H_{0} were true  
Standard normal distribution  Sampling distribution of $W$:
Sampling distribution of $U$: For small samples, the exact distribution of $W$ or $U$ should be used. Note: if ties are present in the data, the formula for the standard deviations $\sigma_W$ and $\sigma_U$ is more complicated.  
Significant?  Significant?  
Two sided:
 For large samples, the table for standard normal probabilities can be used: Two sided:
 
$C\%$ confidence interval for $\mu$  n.a.  
$\bar{y} \pm z^* \times \dfrac{\sigma}{\sqrt{N}}$
where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval). The confidence interval for $\mu$ can also be used as significance test.    
Effect size  n.a.  
Cohen's $d$: Standardized difference between the sample mean and $\mu_0$: $$d = \frac{\bar{y}  \mu_0}{\sigma}$$ Cohen's $d$ indicates how many standard deviations $\sigma$ the sample mean $\bar{y}$ is removed from $\mu_0.$    
Visual representation  n.a.  
  
n.a.  Equivalent to  
  If there are no ties in the data, the two sided MannWhitneyWilcoxon test is equivalent to the KruskalWallis test with an independent variable with 2 levels ($I$ = 2).  
Example context  Example context  
Is the average mental health score of office workers different from $\mu_0 = 50$? Assume that the standard deviation of the mental health scores in the population is $\sigma = 3.$  Do men tend to score higher on social economic status than women?  
n.a.  SPSS  
  Analyze > Nonparametric Tests > Legacy Dialogs > 2 Independent Samples...
 
n.a.  Jamovi  
  TTests > Independent Samples TTest
 
Practice questions  Practice questions  