One sample z test for the mean - overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table
One sample $z$ test for the mean | $z$ test for the difference between two proportions | Spearman's rho |
|
---|---|---|---|
Independent variable | Independent/grouping variable | Variable 1 | |
None | One categorical with 2 independent groups | One of ordinal level | |
Dependent variable | Dependent variable | Variable 2 | |
One quantitative of interval or ratio level | One categorical with 2 independent groups | One of ordinal level | |
Null hypothesis | Null hypothesis | Null hypothesis | |
H0: $\mu = \mu_0$
Here $\mu$ is the population mean, and $\mu_0$ is the population mean according to the null hypothesis. | H0: $\pi_1 = \pi_2$
Here $\pi_1$ is the population proportion of 'successes' for group 1, and $\pi_2$ is the population proportion of 'successes' for group 2. | H0: $\rho_s = 0$
Here $\rho_s$ is the Spearman correlation in the population. The Spearman correlation is a measure for the strength and direction of the monotonic relationship between two variables of at least ordinal measurement level. In words, the null hypothesis would be: H0: there is no monotonic relationship between the two variables in the population. | |
Alternative hypothesis | Alternative hypothesis | Alternative hypothesis | |
H1 two sided: $\mu \neq \mu_0$ H1 right sided: $\mu > \mu_0$ H1 left sided: $\mu < \mu_0$ | H1 two sided: $\pi_1 \neq \pi_2$ H1 right sided: $\pi_1 > \pi_2$ H1 left sided: $\pi_1 < \pi_2$ | H1 two sided: $\rho_s \neq 0$ H1 right sided: $\rho_s > 0$ H1 left sided: $\rho_s < 0$ | |
Assumptions | Assumptions | Assumptions | |
|
|
| |
Test statistic | Test statistic | Test statistic | |
$z = \dfrac{\bar{y} - \mu_0}{\sigma / \sqrt{N}}$
Here $\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to the null hypothesis, $\sigma$ is the population standard deviation, and $N$ is the sample size. The denominator $\sigma / \sqrt{N}$ is the standard deviation of the sampling distribution of $\bar{y}$. The $z$ value indicates how many of these standard deviations $\bar{y}$ is removed from $\mu_0$. | $z = \dfrac{p_1 - p_2}{\sqrt{p(1 - p)\Bigg(\dfrac{1}{n_1} + \dfrac{1}{n_2}\Bigg)}}$
Here $p_1$ is the sample proportion of successes in group 1: $\dfrac{X_1}{n_1}$, $p_2$ is the sample proportion of successes in group 2: $\dfrac{X_2}{n_2}$, $p$ is the total proportion of successes in the sample: $\dfrac{X_1 + X_2}{n_1 + n_2}$, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. Note: we could just as well compute $p_2 - p_1$ in the numerator, but then the left sided alternative becomes $\pi_2 < \pi_1$, and the right sided alternative becomes $\pi_2 > \pi_1.$ | $t = \dfrac{r_s \times \sqrt{N - 2}}{\sqrt{1 - r_s^2}} $ Here $r_s$ is the sample Spearman correlation and $N$ is the sample size. The sample Spearman correlation $r_s$ is equal to the Pearson correlation applied to the rank scores. | |
Sampling distribution of $z$ if H0 were true | Sampling distribution of $z$ if H0 were true | Sampling distribution of $t$ if H0 were true | |
Standard normal distribution | Approximately the standard normal distribution | Approximately the $t$ distribution with $N - 2$ degrees of freedom | |
Significant? | Significant? | Significant? | |
Two sided:
| Two sided:
| Two sided:
| |
$C\%$ confidence interval for $\mu$ | Approximate $C\%$ confidence interval for $\pi_1 - \pi_2$ | n.a. | |
$\bar{y} \pm z^* \times \dfrac{\sigma}{\sqrt{N}}$
where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval). The confidence interval for $\mu$ can also be used as significance test. | Regular (large sample):
| - | |
Effect size | n.a. | n.a. | |
Cohen's $d$: Standardized difference between the sample mean and $\mu_0$: $$d = \frac{\bar{y} - \mu_0}{\sigma}$$ Cohen's $d$ indicates how many standard deviations $\sigma$ the sample mean $\bar{y}$ is removed from $\mu_0.$ | - | - | |
Visual representation | n.a. | n.a. | |
![]() | - | - | |
n.a. | Equivalent to | n.a. | |
- | When testing two sided: chi-squared test for the relationship between two categorical variables, where both categorical variables have 2 levels. | - | |
Example context | Example context | Example context | |
Is the average mental health score of office workers different from $\mu_0 = 50$? Assume that the standard deviation of the mental health scores in the population is $\sigma = 3.$ | Is the proportion of smokers different between men and women? Use the normal approximation for the sampling distribution of the test statistic. | Is there a monotonic relationship between physical health and mental health? | |
n.a. | SPSS | SPSS | |
- | SPSS does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chi-squared test instead. The $p$ value resulting from this chi-squared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:
Analyze > Descriptive Statistics > Crosstabs...
| Analyze > Correlate > Bivariate...
| |
n.a. | Jamovi | Jamovi | |
- | Jamovi does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chi-squared test instead. The $p$ value resulting from this chi-squared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:
Frequencies > Independent Samples - $\chi^2$ test of association
| Regression > Correlation Matrix
| |
Practice questions | Practice questions | Practice questions | |