One sample z test for the mean  overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
One sample $z$ test for the mean  $z$ test for the difference between two proportions  Binomial test for a single proportion 


Independent variable  Independent/grouping variable  Independent variable  
None  One categorical with 2 independent groups  None  
Dependent variable  Dependent variable  Dependent variable  
One quantitative of interval or ratio level  One categorical with 2 independent groups  One categorical with 2 independent groups  
Null hypothesis  Null hypothesis  Null hypothesis  
H_{0}: $\mu = \mu_0$
Here $\mu$ is the population mean, and $\mu_0$ is the population mean according to the null hypothesis.  H_{0}: $\pi_1 = \pi_2$
Here $\pi_1$ is the population proportion of 'successes' for group 1, and $\pi_2$ is the population proportion of 'successes' for group 2.  H_{0}: $\pi = \pi_0$
Here $\pi$ is the population proportion of 'successes', and $\pi_0$ is the population proportion of successes according to the null hypothesis.  
Alternative hypothesis  Alternative hypothesis  Alternative hypothesis  
H_{1} two sided: $\mu \neq \mu_0$ H_{1} right sided: $\mu > \mu_0$ H_{1} left sided: $\mu < \mu_0$  H_{1} two sided: $\pi_1 \neq \pi_2$ H_{1} right sided: $\pi_1 > \pi_2$ H_{1} left sided: $\pi_1 < \pi_2$  H_{1} two sided: $\pi \neq \pi_0$ H_{1} right sided: $\pi > \pi_0$ H_{1} left sided: $\pi < \pi_0$  
Assumptions  Assumptions  Assumptions  


 
Test statistic  Test statistic  Test statistic  
$z = \dfrac{\bar{y}  \mu_0}{\sigma / \sqrt{N}}$
Here $\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to the null hypothesis, $\sigma$ is the population standard deviation, and $N$ is the sample size. The denominator $\sigma / \sqrt{N}$ is the standard deviation of the sampling distribution of $\bar{y}$. The $z$ value indicates how many of these standard deviations $\bar{y}$ is removed from $\mu_0$.  $z = \dfrac{p_1  p_2}{\sqrt{p(1  p)\Bigg(\dfrac{1}{n_1} + \dfrac{1}{n_2}\Bigg)}}$
Here $p_1$ is the sample proportion of successes in group 1: $\dfrac{X_1}{n_1}$, $p_2$ is the sample proportion of successes in group 2: $\dfrac{X_2}{n_2}$, $p$ is the total proportion of successes in the sample: $\dfrac{X_1 + X_2}{n_1 + n_2}$, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. Note: we could just as well compute $p_2  p_1$ in the numerator, but then the left sided alternative becomes $\pi_2 < \pi_1$, and the right sided alternative becomes $\pi_2 > \pi_1.$  $X$ = number of successes in the sample  
Sampling distribution of $z$ if H_{0} were true  Sampling distribution of $z$ if H_{0} were true  Sampling distribution of $X$ if H0 were true  
Standard normal distribution  Approximately the standard normal distribution  Binomial($n$, $P$) distribution.
Here $n = N$ (total sample size), and $P = \pi_0$ (population proportion according to the null hypothesis).  
Significant?  Significant?  Significant?  
Two sided:
 Two sided:
 Two sided:
 
$C\%$ confidence interval for $\mu$  Approximate $C\%$ confidence interval for $\pi_1  \pi_2$  n.a.  
$\bar{y} \pm z^* \times \dfrac{\sigma}{\sqrt{N}}$
where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval). The confidence interval for $\mu$ can also be used as significance test.  Regular (large sample):
   
Effect size  n.a.  n.a.  
Cohen's $d$: Standardized difference between the sample mean and $\mu_0$: $$d = \frac{\bar{y}  \mu_0}{\sigma}$$ Cohen's $d$ indicates how many standard deviations $\sigma$ the sample mean $\bar{y}$ is removed from $\mu_0.$      
Visual representation  n.a.  n.a.  
    
n.a.  Equivalent to  n.a.  
  When testing two sided: chisquared test for the relationship between two categorical variables, where both categorical variables have 2 levels.    
Example context  Example context  Example context  
Is the average mental health score of office workers different from $\mu_0 = 50$? Assume that the standard deviation of the mental health scores in the population is $\sigma = 3.$  Is the proportion of smokers different between men and women? Use the normal approximation for the sampling distribution of the test statistic.  Is the proportion of smokers amongst office workers different from $\pi_0 = 0.2$?  
n.a.  SPSS  SPSS  
  SPSS does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chisquared test instead. The $p$ value resulting from this chisquared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:
Analyze > Descriptive Statistics > Crosstabs...
 Analyze > Nonparametric Tests > Legacy Dialogs > Binomial...
 
n.a.  Jamovi  Jamovi  
  Jamovi does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chisquared test instead. The $p$ value resulting from this chisquared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:
Frequencies > Independent Samples  $\chi^2$ test of association
 Frequencies > 2 Outcomes  Binomial test
 
Practice questions  Practice questions  Practice questions  