One sample z test for the mean - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons (max. of 3) by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

One sample $z$ test for the mean
Chi-squared test for the relationship between two categorical variables
Cochran's Q test
You cannot compare more than 3 methods
Independent variableIndependent /column variableIndependent/grouping variable
NoneOne categorical with $I$ independent groups ($I \geqslant 2$)One within subject factor ($\geq 2$ related groups)
Dependent variableDependent /row variableDependent variable
One quantitative of interval or ratio levelOne categorical with $J$ independent groups ($J \geqslant 2$)One categorical with 2 independent groups
Null hypothesisNull hypothesisNull hypothesis
H0: $\mu = \mu_0$

Here $\mu$ is the population mean, and $\mu_0$ is the population mean according to the null hypothesis.
H0: there is no association between the row and column variable

More precisely, if there are $I$ independent random samples of size $n_i$ from each of $I$ populations, defined by the independent variable:
  • H0: the distribution of the dependent variable is the same in each of the $I$ populations
If there is one random sample of size $N$ from the total population:
  • H0: the row and column variables are independent
H0: $\pi_1 = \pi_2 = \ldots = \pi_I$

Here $\pi_1$ is the population proportion of 'successes' for group 1, $\pi_2$ is the population proportion of 'successes' for group 2, and $\pi_I$ is the population proportion of 'successes' for group $I.$
Alternative hypothesisAlternative hypothesisAlternative hypothesis
H1 two sided: $\mu \neq \mu_0$
H1 right sided: $\mu > \mu_0$
H1 left sided: $\mu < \mu_0$
H1: there is an association between the row and column variable

More precisely, if there are $I$ independent random samples of size $n_i$ from each of $I$ populations, defined by the independent variable:
  • H1: the distribution of the dependent variable is not the same in all of the $I$ populations
If there is one random sample of size $N$ from the total population:
  • H1: the row and column variables are dependent
H1: not all population proportions are equal
AssumptionsAssumptionsAssumptions
  • Scores are normally distributed in the population
  • Population standard deviation $\sigma$ is known
  • Sample is a simple random sample from the population. That is, observations are independent of one another
  • Sample size is large enough for $X^2$ to be approximately chi-squared distributed under the null hypothesis. Rule of thumb:
    • 2 $\times$ 2 table: all four expected cell counts are 5 or more
    • Larger than 2 $\times$ 2 tables: average of the expected cell counts is 5 or more, smallest expected cell count is 1 or more
  • There are $I$ independent simple random samples from each of $I$ populations defined by the independent variable, or there is one simple random sample from the total population
  • Sample of 'blocks' (usually the subjects) is a simple random sample from the population. That is, blocks are independent of one another
Test statisticTest statisticTest statistic
$z = \dfrac{\bar{y} - \mu_0}{\sigma / \sqrt{N}}$
Here $\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to the null hypothesis, $\sigma$ is the population standard deviation, and $N$ is the sample size.

The denominator $\sigma / \sqrt{N}$ is the standard deviation of the sampling distribution of $\bar{y}$. The $z$ value indicates how many of these standard deviations $\bar{y}$ is removed from $\mu_0$.
$X^2 = \sum{\frac{(\mbox{observed cell count} - \mbox{expected cell count})^2}{\mbox{expected cell count}}}$
Here for each cell, the expected cell count = $\dfrac{\mbox{row total} \times \mbox{column total}}{\mbox{total sample size}}$, the observed cell count is the observed sample count in that same cell, and the sum is over all $I \times J$ cells.
If a failure is scored as 0 and a success is scored as 1:

$Q = k(k - 1) \dfrac{\sum_{groups} \Big (\mbox{group total} - \frac{\mbox{grand total}}{k} \Big)^2}{\sum_{blocks} \mbox{block total} \times (k - \mbox{block total})}$

Here $k$ is the number of related groups (usually the number of repeated measurements), a group total is the sum of the scores in a group, a block total is the sum of the scores in a block (usually a subject), and the grand total is the sum of all the scores.

Before computing $Q$, first exclude blocks with equal scores in all $k$ groups.
Sampling distribution of $z$ if H0 were trueSampling distribution of $X^2$ if H0 were trueSampling distribution of $Q$ if H0 were true
Standard normal distributionApproximately the chi-squared distribution with $(I - 1) \times (J - 1)$ degrees of freedomIf the number of blocks (usually the number of subjects) is large, approximately the chi-squared distribution with $k - 1$ degrees of freedom
Significant?Significant?Significant?
Two sided: Right sided: Left sided:
  • Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
  • Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
If the number of blocks is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
  • Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
  • Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
$C\%$ confidence interval for $\mu$n.a.n.a.
$\bar{y} \pm z^* \times \dfrac{\sigma}{\sqrt{N}}$
where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval).

The confidence interval for $\mu$ can also be used as significance test.
--
Effect sizen.a.n.a.
Cohen's $d$:
Standardized difference between the sample mean and $\mu_0$: $$d = \frac{\bar{y} - \mu_0}{\sigma}$$ Cohen's $d$ indicates how many standard deviations $\sigma$ the sample mean $\bar{y}$ is removed from $\mu_0.$
--
Visual representationn.a.n.a.
One sample z test
--
n.a.n.a.Equivalent to
--Friedman test, with a categorical dependent variable consisting of two independent groups.
Example contextExample contextExample context
Is the average mental health score of office workers different from $\mu_0 = 50$? Assume that the standard deviation of the mental health scores in the population is $\sigma = 3.$Is there an association between economic class and gender? Is the distribution of economic class different between men and women?Subjects perform three different tasks, which they can either perform correctly or incorrectly. Is there a difference in task performance between the three different tasks?
n.a.SPSSSPSS
-Analyze > Descriptive Statistics > Crosstabs...
  • Put one of your two categorical variables in the box below Row(s), and the other categorical variable in the box below Column(s)
  • Click the Statistics... button, and click on the square in front of Chi-square
  • Continue and click OK
Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
  • Put the $k$ variables containing the scores for the $k$ related groups in the white box below Test Variables
  • Under Test Type, select Cochran's Q test
n.a.JamoviJamovi
-Frequencies > Independent Samples - $\chi^2$ test of association
  • Put one of your two categorical variables in the box below Rows, and the other categorical variable in the box below Columns
Jamovi does not have a specific option for the Cochran's Q test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the $p$ value that would have resulted from the Cochran's Q test. Go to:

ANOVA > Repeated Measures ANOVA - Friedman
  • Put the $k$ variables containing the scores for the $k$ related groups in the box below Measures
Practice questionsPractice questionsPractice questions