One sample z test for the mean - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons (max. of 3) by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

One sample $z$ test for the mean
Binomial test for a single proportion
One sample $z$ test for the mean
Friedman test
Independent variableIndependent variableIndependent variableIndependent/grouping variable
NoneNoneNoneOne within subject factor ($\geq 2$ related groups)
Dependent variableDependent variableDependent variableDependent variable
One quantitative of interval or ratio levelOne categorical with 2 independent groupsOne quantitative of interval or ratio levelOne of ordinal level
Null hypothesisNull hypothesisNull hypothesisNull hypothesis
H0: $\mu = \mu_0$

Here $\mu$ is the population mean, and $\mu_0$ is the population mean according to the null hypothesis.
H0: $\pi = \pi_0$

Here $\pi$ is the population proportion of 'successes', and $\pi_0$ is the population proportion of successes according to the null hypothesis.
H0: $\mu = \mu_0$

Here $\mu$ is the population mean, and $\mu_0$ is the population mean according to the null hypothesis.
H0: the population scores in any of the related groups are not systematically higher or lower than the population scores in any of the other related groups

Usually the related groups are the different measurement points. Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher.
Alternative hypothesisAlternative hypothesisAlternative hypothesisAlternative hypothesis
H1 two sided: $\mu \neq \mu_0$
H1 right sided: $\mu > \mu_0$
H1 left sided: $\mu < \mu_0$
H1 two sided: $\pi \neq \pi_0$
H1 right sided: $\pi > \pi_0$
H1 left sided: $\pi < \pi_0$
H1 two sided: $\mu \neq \mu_0$
H1 right sided: $\mu > \mu_0$
H1 left sided: $\mu < \mu_0$
H1: the population scores in some of the related groups are systematically higher or lower than the population scores in other related groups
AssumptionsAssumptionsAssumptionsAssumptions
  • Scores are normally distributed in the population
  • Population standard deviation $\sigma$ is known
  • Sample is a simple random sample from the population. That is, observations are independent of one another
  • Sample is a simple random sample from the population. That is, observations are independent of one another
  • Scores are normally distributed in the population
  • Population standard deviation $\sigma$ is known
  • Sample is a simple random sample from the population. That is, observations are independent of one another
  • Sample of 'blocks' (usually the subjects) is a simple random sample from the population. That is, blocks are independent of one another
Test statisticTest statisticTest statisticTest statistic
$z = \dfrac{\bar{y} - \mu_0}{\sigma / \sqrt{N}}$
Here $\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to the null hypothesis, $\sigma$ is the population standard deviation, and $N$ is the sample size.

The denominator $\sigma / \sqrt{N}$ is the standard deviation of the sampling distribution of $\bar{y}$. The $z$ value indicates how many of these standard deviations $\bar{y}$ is removed from $\mu_0$.
$X$ = number of successes in the sample$z = \dfrac{\bar{y} - \mu_0}{\sigma / \sqrt{N}}$
Here $\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to the null hypothesis, $\sigma$ is the population standard deviation, and $N$ is the sample size.

The denominator $\sigma / \sqrt{N}$ is the standard deviation of the sampling distribution of $\bar{y}$. The $z$ value indicates how many of these standard deviations $\bar{y}$ is removed from $\mu_0$.
$Q = \dfrac{12}{N \times k(k + 1)} \sum R^2_i - 3 \times N(k + 1)$

Here $N$ is the number of 'blocks' (usually the subjects - so if you have 4 repeated measurements for 60 subjects, $N$ equals 60), $k$ is the number of related groups (usually the number of repeated measurements), and $R_i$ is the sum of ranks in group $i$.

Remember that multiplication precedes addition, so first compute $\frac{12}{N \times k(k + 1)} \times \sum R^2_i$ and then subtract $3 \times N(k + 1)$.

Note: if ties are present in the data, the formula for $Q$ is more complicated.
Sampling distribution of $z$ if H0 were trueSampling distribution of $X$ if H0 were trueSampling distribution of $z$ if H0 were trueSampling distribution of $Q$ if H0 were true
Standard normal distributionBinomial($n$, $P$) distribution.

Here $n = N$ (total sample size), and $P = \pi_0$ (population proportion according to the null hypothesis).
Standard normal distributionIf the number of blocks $N$ is large, approximately the chi-squared distribution with $k - 1$ degrees of freedom.

For small samples, the exact distribution of $Q$ should be used.
Significant?Significant?Significant?Significant?
Two sided: Right sided: Left sided: Two sided:
  • Check if $X$ observed in sample is in the rejection region or
  • Find two sided $p$ value corresponding to observed $X$ and check if it is equal to or smaller than $\alpha$
Right sided:
  • Check if $X$ observed in sample is in the rejection region or
  • Find right sided $p$ value corresponding to observed $X$ and check if it is equal to or smaller than $\alpha$
Left sided:
  • Check if $X$ observed in sample is in the rejection region or
  • Find left sided $p$ value corresponding to observed $X$ and check if it is equal to or smaller than $\alpha$
Two sided: Right sided: Left sided: If the number of blocks $N$ is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
  • Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
  • Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
$C\%$ confidence interval for $\mu$n.a.$C\%$ confidence interval for $\mu$n.a.
$\bar{y} \pm z^* \times \dfrac{\sigma}{\sqrt{N}}$
where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval).

The confidence interval for $\mu$ can also be used as significance test.
-$\bar{y} \pm z^* \times \dfrac{\sigma}{\sqrt{N}}$
where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval).

The confidence interval for $\mu$ can also be used as significance test.
-
Effect sizen.a.Effect sizen.a.
Cohen's $d$:
Standardized difference between the sample mean and $\mu_0$: $$d = \frac{\bar{y} - \mu_0}{\sigma}$$ Cohen's $d$ indicates how many standard deviations $\sigma$ the sample mean $\bar{y}$ is removed from $\mu_0.$
-Cohen's $d$:
Standardized difference between the sample mean and $\mu_0$: $$d = \frac{\bar{y} - \mu_0}{\sigma}$$ Cohen's $d$ indicates how many standard deviations $\sigma$ the sample mean $\bar{y}$ is removed from $\mu_0.$
-
Visual representationn.a.Visual representationn.a.
One sample z test
-
One sample z test
-
Example contextExample contextExample contextExample context
Is the average mental health score of office workers different from $\mu_0 = 50$? Assume that the standard deviation of the mental health scores in the population is $\sigma = 3.$Is the proportion of smokers amongst office workers different from $\pi_0 = 0.2$?Is the average mental health score of office workers different from $\mu_0 = 50$? Assume that the standard deviation of the mental health scores in the population is $\sigma = 3.$Is there a difference in depression level between measurement point 1 (pre-intervention), measurement point 2 (1 week post-intervention), and measurement point 3 (6 weeks post-intervention)?
n.a.SPSSn.a.SPSS
-Analyze > Nonparametric Tests > Legacy Dialogs > Binomial...
  • Put your dichotomous variable in the box below Test Variable List
  • Fill in the value for $\pi_0$ in the box next to Test Proportion
-Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
  • Put the $k$ variables containing the scores for the $k$ related groups in the white box below Test Variables
  • Under Test Type, select the Friedman test
n.a.Jamovin.a.Jamovi
-Frequencies > 2 Outcomes - Binomial test
  • Put your dichotomous variable in the white box at the right
  • Fill in the value for $\pi_0$ in the box next to Test value
  • Under Hypothesis, select your alternative hypothesis
-ANOVA > Repeated Measures ANOVA - Friedman
  • Put the $k$ variables containing the scores for the $k$ related groups in the box below Measures
Practice questionsPractice questionsPractice questionsPractice questions