One sample z test for the mean - overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table
One sample $z$ test for the mean | Binomial test for a single proportion | Two sample $z$ test | $z$ test for the difference between two proportions |
|
---|---|---|---|---|
Independent variable | Independent variable | Independent/grouping variable | Independent/grouping variable | |
None | None | One categorical with 2 independent groups | One categorical with 2 independent groups | |
Dependent variable | Dependent variable | Dependent variable | Dependent variable | |
One quantitative of interval or ratio level | One categorical with 2 independent groups | One quantitative of interval or ratio level | One categorical with 2 independent groups | |
Null hypothesis | Null hypothesis | Null hypothesis | Null hypothesis | |
H0: $\mu = \mu_0$
Here $\mu$ is the population mean, and $\mu_0$ is the population mean according to the null hypothesis. | H0: $\pi = \pi_0$
Here $\pi$ is the population proportion of 'successes', and $\pi_0$ is the population proportion of successes according to the null hypothesis. | H0: $\mu_1 = \mu_2$
Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2. | H0: $\pi_1 = \pi_2$
Here $\pi_1$ is the population proportion of 'successes' for group 1, and $\pi_2$ is the population proportion of 'successes' for group 2. | |
Alternative hypothesis | Alternative hypothesis | Alternative hypothesis | Alternative hypothesis | |
H1 two sided: $\mu \neq \mu_0$ H1 right sided: $\mu > \mu_0$ H1 left sided: $\mu < \mu_0$ | H1 two sided: $\pi \neq \pi_0$ H1 right sided: $\pi > \pi_0$ H1 left sided: $\pi < \pi_0$ | H1 two sided: $\mu_1 \neq \mu_2$ H1 right sided: $\mu_1 > \mu_2$ H1 left sided: $\mu_1 < \mu_2$ | H1 two sided: $\pi_1 \neq \pi_2$ H1 right sided: $\pi_1 > \pi_2$ H1 left sided: $\pi_1 < \pi_2$ | |
Assumptions | Assumptions | Assumptions | Assumptions | |
|
|
|
| |
Test statistic | Test statistic | Test statistic | Test statistic | |
$z = \dfrac{\bar{y} - \mu_0}{\sigma / \sqrt{N}}$
Here $\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to the null hypothesis, $\sigma$ is the population standard deviation, and $N$ is the sample size. The denominator $\sigma / \sqrt{N}$ is the standard deviation of the sampling distribution of $\bar{y}$. The $z$ value indicates how many of these standard deviations $\bar{y}$ is removed from $\mu_0$. | $X$ = number of successes in the sample | $z = \dfrac{(\bar{y}_1 - \bar{y}_2) - 0}{\sqrt{\dfrac{\sigma^2_1}{n_1} + \dfrac{\sigma^2_2}{n_2}}} = \dfrac{\bar{y}_1 - \bar{y}_2}{\sqrt{\dfrac{\sigma^2_1}{n_1} + \dfrac{\sigma^2_2}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $\sigma^2_1$ is the population variance in population 1, $\sigma^2_2$ is the population variance in population 2, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis. The denominator $\sqrt{\frac{\sigma^2_1}{n_1} + \frac{\sigma^2_2}{n_2}}$ is the standard deviation of the sampling distribution of $\bar{y}_1 - \bar{y}_2$. The $z$ value indicates how many of these standard deviations $\bar{y}_1 - \bar{y}_2$ is removed from 0. Note: we could just as well compute $\bar{y}_2 - \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$. | $z = \dfrac{p_1 - p_2}{\sqrt{p(1 - p)\Bigg(\dfrac{1}{n_1} + \dfrac{1}{n_2}\Bigg)}}$
Here $p_1$ is the sample proportion of successes in group 1: $\dfrac{X_1}{n_1}$, $p_2$ is the sample proportion of successes in group 2: $\dfrac{X_2}{n_2}$, $p$ is the total proportion of successes in the sample: $\dfrac{X_1 + X_2}{n_1 + n_2}$, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. Note: we could just as well compute $p_2 - p_1$ in the numerator, but then the left sided alternative becomes $\pi_2 < \pi_1$, and the right sided alternative becomes $\pi_2 > \pi_1.$ | |
Sampling distribution of $z$ if H0 were true | Sampling distribution of $X$ if H0 were true | Sampling distribution of $z$ if H0 were true | Sampling distribution of $z$ if H0 were true | |
Standard normal distribution | Binomial($n$, $P$) distribution.
Here $n = N$ (total sample size), and $P = \pi_0$ (population proportion according to the null hypothesis). | Standard normal distribution | Approximately the standard normal distribution | |
Significant? | Significant? | Significant? | Significant? | |
Two sided:
| Two sided:
| Two sided:
| Two sided:
| |
$C\%$ confidence interval for $\mu$ | n.a. | $C\%$ confidence interval for $\mu_1 - \mu_2$ | Approximate $C\%$ confidence interval for $\pi_1 - \pi_2$ | |
$\bar{y} \pm z^* \times \dfrac{\sigma}{\sqrt{N}}$
where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval). The confidence interval for $\mu$ can also be used as significance test. | - | $(\bar{y}_1 - \bar{y}_2) \pm z^* \times \sqrt{\dfrac{\sigma^2_1}{n_1} + \dfrac{\sigma^2_2}{n_2}}$
where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval). The confidence interval for $\mu_1 - \mu_2$ can also be used as significance test. | Regular (large sample):
| |
Effect size | n.a. | n.a. | n.a. | |
Cohen's $d$: Standardized difference between the sample mean and $\mu_0$: $$d = \frac{\bar{y} - \mu_0}{\sigma}$$ Cohen's $d$ indicates how many standard deviations $\sigma$ the sample mean $\bar{y}$ is removed from $\mu_0.$ | - | - | - | |
Visual representation | n.a. | Visual representation | n.a. | |
![]() | - | ![]() | - | |
n.a. | n.a. | n.a. | Equivalent to | |
- | - | - | When testing two sided: chi-squared test for the relationship between two categorical variables, where both categorical variables have 2 levels. | |
Example context | Example context | Example context | Example context | |
Is the average mental health score of office workers different from $\mu_0 = 50$? Assume that the standard deviation of the mental health scores in the population is $\sigma = 3.$ | Is the proportion of smokers amongst office workers different from $\pi_0 = 0.2$? | Is the average mental health score different between men and women? Assume that in the population, the standard devation of the mental health scores is $\sigma_1 = 2$ amongst men and $\sigma_2 = 2.5$ amongst women. | Is the proportion of smokers different between men and women? Use the normal approximation for the sampling distribution of the test statistic. | |
n.a. | SPSS | n.a. | SPSS | |
- | Analyze > Nonparametric Tests > Legacy Dialogs > Binomial...
| - | SPSS does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chi-squared test instead. The $p$ value resulting from this chi-squared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:
Analyze > Descriptive Statistics > Crosstabs...
| |
n.a. | Jamovi | n.a. | Jamovi | |
- | Frequencies > 2 Outcomes - Binomial test
| - | Jamovi does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chi-squared test instead. The $p$ value resulting from this chi-squared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:
Frequencies > Independent Samples - $\chi^2$ test of association
| |
Practice questions | Practice questions | Practice questions | Practice questions | |