One sample z test for the mean  overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
One sample $z$ test for the mean  Binomial test for a single proportion  Two sample $z$ test  Binomial test for a single proportion  KruskalWallis test 


Independent variable  Independent variable  Independent/grouping variable  Independent variable  Independent/grouping variable  
None  None  One categorical with 2 independent groups  None  One categorical with $I$ independent groups ($I \geqslant 2$)  
Dependent variable  Dependent variable  Dependent variable  Dependent variable  Dependent variable  
One quantitative of interval or ratio level  One categorical with 2 independent groups  One quantitative of interval or ratio level  One categorical with 2 independent groups  One of ordinal level  
Null hypothesis  Null hypothesis  Null hypothesis  Null hypothesis  Null hypothesis  
H_{0}: $\mu = \mu_0$
Here $\mu$ is the population mean, and $\mu_0$ is the population mean according to the null hypothesis.  H_{0}: $\pi = \pi_0$
Here $\pi$ is the population proportion of 'successes', and $\pi_0$ is the population proportion of successes according to the null hypothesis.  H_{0}: $\mu_1 = \mu_2$
Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2.  H_{0}: $\pi = \pi_0$
Here $\pi$ is the population proportion of 'successes', and $\pi_0$ is the population proportion of successes according to the null hypothesis.  If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in all $I$ populations:
Formulation 1:
 
Alternative hypothesis  Alternative hypothesis  Alternative hypothesis  Alternative hypothesis  Alternative hypothesis  
H_{1} two sided: $\mu \neq \mu_0$ H_{1} right sided: $\mu > \mu_0$ H_{1} left sided: $\mu < \mu_0$  H_{1} two sided: $\pi \neq \pi_0$ H_{1} right sided: $\pi > \pi_0$ H_{1} left sided: $\pi < \pi_0$  H_{1} two sided: $\mu_1 \neq \mu_2$ H_{1} right sided: $\mu_1 > \mu_2$ H_{1} left sided: $\mu_1 < \mu_2$  H_{1} two sided: $\pi \neq \pi_0$ H_{1} right sided: $\pi > \pi_0$ H_{1} left sided: $\pi < \pi_0$  If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in all $I$ populations:
Formulation 1:
 
Assumptions  Assumptions  Assumptions  Assumptions  Assumptions  




 
Test statistic  Test statistic  Test statistic  Test statistic  Test statistic  
$z = \dfrac{\bar{y}  \mu_0}{\sigma / \sqrt{N}}$
Here $\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to the null hypothesis, $\sigma$ is the population standard deviation, and $N$ is the sample size. The denominator $\sigma / \sqrt{N}$ is the standard deviation of the sampling distribution of $\bar{y}$. The $z$ value indicates how many of these standard deviations $\bar{y}$ is removed from $\mu_0$.  $X$ = number of successes in the sample  $z = \dfrac{(\bar{y}_1  \bar{y}_2)  0}{\sqrt{\dfrac{\sigma^2_1}{n_1} + \dfrac{\sigma^2_2}{n_2}}} = \dfrac{\bar{y}_1  \bar{y}_2}{\sqrt{\dfrac{\sigma^2_1}{n_1} + \dfrac{\sigma^2_2}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $\sigma^2_1$ is the population variance in population 1, $\sigma^2_2$ is the population variance in population 2, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis. The denominator $\sqrt{\frac{\sigma^2_1}{n_1} + \frac{\sigma^2_2}{n_2}}$ is the standard deviation of the sampling distribution of $\bar{y}_1  \bar{y}_2$. The $z$ value indicates how many of these standard deviations $\bar{y}_1  \bar{y}_2$ is removed from 0. Note: we could just as well compute $\bar{y}_2  \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$.  $X$ = number of successes in the sample  $H = \dfrac{12}{N (N + 1)} \sum \dfrac{R^2_i}{n_i}  3(N + 1)$  
Sampling distribution of $z$ if H_{0} were true  Sampling distribution of $X$ if H0 were true  Sampling distribution of $z$ if H_{0} were true  Sampling distribution of $X$ if H0 were true  Sampling distribution of $H$ if H_{0} were true  
Standard normal distribution  Binomial($n$, $P$) distribution.
Here $n = N$ (total sample size), and $P = \pi_0$ (population proportion according to the null hypothesis).  Standard normal distribution  Binomial($n$, $P$) distribution.
Here $n = N$ (total sample size), and $P = \pi_0$ (population proportion according to the null hypothesis).  For large samples, approximately the chisquared distribution with $I  1$ degrees of freedom. For small samples, the exact distribution of $H$ should be used.  
Significant?  Significant?  Significant?  Significant?  Significant?  
Two sided:
 Two sided:
 Two sided:
 Two sided:
 For large samples, the table with critical $X^2$ values can be used. If we denote $X^2 = H$:
 
$C\%$ confidence interval for $\mu$  n.a.  $C\%$ confidence interval for $\mu_1  \mu_2$  n.a.  n.a.  
$\bar{y} \pm z^* \times \dfrac{\sigma}{\sqrt{N}}$
where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval). The confidence interval for $\mu$ can also be used as significance test.    $(\bar{y}_1  \bar{y}_2) \pm z^* \times \sqrt{\dfrac{\sigma^2_1}{n_1} + \dfrac{\sigma^2_2}{n_2}}$
where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval). The confidence interval for $\mu_1  \mu_2$ can also be used as significance test.      
Effect size  n.a.  n.a.  n.a.  n.a.  
Cohen's $d$: Standardized difference between the sample mean and $\mu_0$: $$d = \frac{\bar{y}  \mu_0}{\sigma}$$ Cohen's $d$ indicates how many standard deviations $\sigma$ the sample mean $\bar{y}$ is removed from $\mu_0.$          
Visual representation  n.a.  Visual representation  n.a.  n.a.  
      
Example context  Example context  Example context  Example context  Example context  
Is the average mental health score of office workers different from $\mu_0 = 50$? Assume that the standard deviation of the mental health scores in the population is $\sigma = 3.$  Is the proportion of smokers amongst office workers different from $\pi_0 = 0.2$?  Is the average mental health score different between men and women? Assume that in the population, the standard devation of the mental health scores is $\sigma_1 = 2$ amongst men and $\sigma_2 = 2.5$ amongst women.  Is the proportion of smokers amongst office workers different from $\pi_0 = 0.2$?  Do people from different religions tend to score differently on social economic status?  
n.a.  SPSS  n.a.  SPSS  SPSS  
  Analyze > Nonparametric Tests > Legacy Dialogs > Binomial...
   Analyze > Nonparametric Tests > Legacy Dialogs > Binomial...
 Analyze > Nonparametric Tests > Legacy Dialogs > K Independent Samples...
 
n.a.  Jamovi  n.a.  Jamovi  Jamovi  
  Frequencies > 2 Outcomes  Binomial test
   Frequencies > 2 Outcomes  Binomial test
 ANOVA > One Way ANOVA  KruskalWallis
 
Practice questions  Practice questions  Practice questions  Practice questions  Practice questions  