One sample t test for the mean - overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table
One sample $t$ test for the mean | McNemar's test |
|
---|---|---|
Independent variable | Independent variable | |
None | 2 paired groups | |
Dependent variable | Dependent variable | |
One quantitative of interval or ratio level | One categorical with 2 independent groups | |
Null hypothesis | Null hypothesis | |
H0: $\mu = \mu_0$
Here $\mu$ is the population mean, and $\mu_0$ is the population mean according to the null hypothesis. | Let's say that the scores on the dependent variable are scored 0 and 1. Then for each pair of scores, the data allow four options:
Other formulations of the null hypothesis are:
| |
Alternative hypothesis | Alternative hypothesis | |
H1 two sided: $\mu \neq \mu_0$ H1 right sided: $\mu > \mu_0$ H1 left sided: $\mu < \mu_0$ | The alternative hypothesis H1 is that for each pair of scores, P(first score of pair is 0 while second score of pair is 1) $\neq$ P(first score of pair is 1 while second score of pair is 0). That is, the probability that a pair of scores switches from 0 to 1 is not the same as the probability that a pair of scores switches from 1 to 0. Other formulations of the alternative hypothesis are:
| |
Assumptions | Assumptions | |
|
| |
Test statistic | Test statistic | |
$t = \dfrac{\bar{y} - \mu_0}{s / \sqrt{N}}$
Here $\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to the null hypothesis, $s$ is the sample standard deviation, and $N$ is the sample size. The denominator $s / \sqrt{N}$ is the standard error of the sampling distribution of $\bar{y}$. The $t$ value indicates how many standard errors $\bar{y}$ is removed from $\mu_0$. | $X^2 = \dfrac{(b - c)^2}{b + c}$
Here $b$ is the number of pairs in the sample for which the first score is 0 while the second score is 1, and $c$ is the number of pairs in the sample for which the first score is 1 while the second score is 0. | |
Sampling distribution of $t$ if H0 were true | Sampling distribution of $X^2$ if H0 were true | |
$t$ distribution with $N - 1$ degrees of freedom | If $b + c$ is large enough (say, > 20), approximately the chi-squared distribution with 1 degree of freedom. If $b + c$ is small, the Binomial($n$, $P$) distribution should be used, with $n = b + c$ and $P = 0.5$. In that case the test statistic becomes equal to $b$. | |
Significant? | Significant? | |
Two sided:
| For test statistic $X^2$:
| |
$C\%$ confidence interval for $\mu$ | n.a. | |
$\bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}}$
where the critical value $t^*$ is the value under the $t_{N-1}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). The confidence interval for $\mu$ can also be used as significance test. | - | |
Effect size | n.a. | |
Cohen's $d$: Standardized difference between the sample mean and $\mu_0$: $$d = \frac{\bar{y} - \mu_0}{s}$$ Cohen's $d$ indicates how many standard deviations $s$ the sample mean $\bar{y}$ is removed from $\mu_0.$ | - | |
Visual representation | n.a. | |
![]() | - | |
n.a. | Equivalent to | |
- |
| |
Example context | Example context | |
Is the average mental health score of office workers different from $\mu_0 = 50$? | Does a tv documentary about spiders change whether people are afraid (yes/no) of spiders? | |
SPSS | SPSS | |
Analyze > Compare Means > One-Sample T Test...
| Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
| |
Jamovi | Jamovi | |
T-Tests > One Sample T-Test
| Frequencies > Paired Samples - McNemar test
| |
Practice questions | Practice questions | |