# Paired sample t test - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Paired sample $t$ test
$z$ test for a single proportion
Independent variableIndependent variable
2 paired groupsNone
Dependent variableDependent variable
One quantitative of interval or ratio levelOne categorical with 2 independent groups
Null hypothesisNull hypothesis
H0: $\mu = \mu_0$

Here $\mu$ is the population mean of the difference scores, and $\mu_0$ is the population mean of the difference scores according to the null hypothesis, which is usually 0. A difference score is the difference between the first score of a pair and the second score of a pair.
H0: $\pi = \pi_0$

Here $\pi$ is the population proportion of 'successes', and $\pi_0$ is the population proportion of successes according to the null hypothesis.
Alternative hypothesisAlternative hypothesis
H1 two sided: $\mu \neq \mu_0$
H1 right sided: $\mu > \mu_0$
H1 left sided: $\mu < \mu_0$
H1 two sided: $\pi \neq \pi_0$
H1 right sided: $\pi > \pi_0$
H1 left sided: $\pi < \pi_0$
AssumptionsAssumptions
• Difference scores are normally distributed in the population
• Sample of difference scores is a simple random sample from the population of difference scores. That is, difference scores are independent of one another
• Sample size is large enough for $z$ to be approximately normally distributed. Rule of thumb:
• Significance test: $N \times \pi_0$ and $N \times (1 - \pi_0)$ are each larger than 10
• Regular (large sample) 90%, 95%, or 99% confidence interval: number of successes and number of failures in sample are each 15 or more
• Plus four 90%, 95%, or 99% confidence interval: total sample size is 10 or more
• Sample is a simple random sample from the population. That is, observations are independent of one another
If the sample size is too small for $z$ to be approximately normally distributed, the binomial test for a single proportion should be used.
Test statisticTest statistic
$t = \dfrac{\bar{y} - \mu_0}{s / \sqrt{N}}$
Here $\bar{y}$ is the sample mean of the difference scores, $\mu_0$ is the population mean of the difference scores according to the null hypothesis, $s$ is the sample standard deviation of the difference scores, and $N$ is the sample size (number of difference scores).

The denominator $s / \sqrt{N}$ is the standard error of the sampling distribution of $\bar{y}$. The $t$ value indicates how many standard errors $\bar{y}$ is removed from $\mu_0$.
$z = \dfrac{p - \pi_0}{\sqrt{\dfrac{\pi_0(1 - \pi_0)}{N}}}$
Here $p$ is the sample proportion of successes: $\dfrac{X}{N}$, $N$ is the sample size, and $\pi_0$ is the population proportion of successes according to the null hypothesis.
Sampling distribution of $t$ if H0 were trueSampling distribution of $z$ if H0 were true
$t$ distribution with $N - 1$ degrees of freedomApproximately the standard normal distribution
Significant?Significant?
Two sided:
Right sided:
Left sided:
Two sided:
Right sided:
Left sided:
$C\%$ confidence interval for $\mu$Approximate $C\%$ confidence interval for $\pi$
$\bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}}$
where the critical value $t^*$ is the value under the $t_{N-1}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20).

The confidence interval for $\mu$ can also be used as significance test.
Regular (large sample):
• $p \pm z^* \times \sqrt{\dfrac{p(1 - p)}{N}}$
where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval)
With plus four method:
• $p_{plus} \pm z^* \times \sqrt{\dfrac{p_{plus}(1 - p_{plus})}{N + 4}}$
where $p_{plus} = \dfrac{X + 2}{N + 4}$ and the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval)
Effect sizen.a.
Cohen's $d$:
Standardized difference between the sample mean of the difference scores and $\mu_0$: $$d = \frac{\bar{y} - \mu_0}{s}$$ Cohen's $d$ indicates how many standard deviations $s$ the sample mean of the difference scores $\bar{y}$ is removed from $\mu_0.$
-
Visual representationn.a.
-
Equivalent toEquivalent to
• One sample $t$ test on the difference scores.
• Repeated measures ANOVA with one dichotomous within subjects factor.
• When testing two sided: goodness of fit test, with a categorical variable with 2 levels.
• When $N$ is large, the $p$ value from the $z$ test for a single proportion approaches the $p$ value from the binomial test for a single proportion. The $z$ test for a single proportion is just a large sample approximation of the binomial test for a single proportion.
Example contextExample context
Is the average difference between the mental health scores before and after an intervention different from $\mu_0 = 0$?Is the proportion of smokers amongst office workers different from $\pi_0 = 0.2$? Use the normal approximation for the sampling distribution of the test statistic.
SPSSSPSS
Analyze > Compare Means > Paired-Samples T Test...
• Put the two paired variables in the boxes below Variable 1 and Variable 2
Analyze > Nonparametric Tests > Legacy Dialogs > Binomial...
• Put your dichotomous variable in the box below Test Variable List
• Fill in the value for $\pi_0$ in the box next to Test Proportion
If computation time allows, SPSS will give you the exact $p$ value based on the binomial distribution, rather than the approximate $p$ value based on the normal distribution
JamoviJamovi
T-Tests > Paired Samples T-Test
• Put the two paired variables in the box below Paired Variables, one on the left side of the vertical line and one on the right side of the vertical line
• Under Hypothesis, select your alternative hypothesis
Frequencies > 2 Outcomes - Binomial test
• Put your dichotomous variable in the white box at the right
• Fill in the value for $\pi_0$ in the box next to Test value
• Under Hypothesis, select your alternative hypothesis
Jamovi will give you the exact $p$ value based on the binomial distribution, rather than the approximate $p$ value based on the normal distribution
Practice questionsPractice questions