This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
One or more quantitative of interval or ratio level and/or one or more categorical with independent groups, transformed into code variables
Dependent variable
Dependent variable
One quantitative of interval or ratio level
One quantitative of interval or ratio level
Null hypothesis
Null hypothesis
H_{0}: $\mu = \mu_0$
Here $\mu$ is the population mean of the difference scores, and $\mu_0$ is the population mean of the difference scores according to the null hypothesis, which is usually 0. A difference score is the difference between the first score of a pair and the second score of a pair.
H_{0}: the variance explained by all the independent variables together (the complete model) is 0 in the population, i.e. $\rho^2 = 0$
$t$ test for individual regression coefficient $\beta_k$:
H_{0}: $\beta_k = 0$
in the regression equation
$
\mu_y = \beta_0 + \beta_1 \times x_1 + \beta_2 \times x_2 + \ldots + \beta_K \times x_K$. Here $ x_i$ represents independent variable $ i$, $\beta_i$ is the regression weight for independent variable $ x_i$, and $\mu_y$ represents the population mean of the dependent variable $ y$ given the scores on the independent variables.
Alternative hypothesis
Alternative hypothesis
H_{1} two sided: $\mu \neq \mu_0$
H_{1} right sided: $\mu > \mu_0$
H_{1} left sided: $\mu < \mu_0$
$F$ test for the complete regression model:
H_{1}: not all population regression coefficients are 0 or equivalenty
H_{1}: the variance explained by all the independent variables together (the complete model) is larger than 0 in the population, i.e. $\rho^2 > 0$
$t$ test for individual regression coefficient $\beta_k$:
H_{1} two sided: $\beta_k \neq 0$
H_{1} right sided: $\beta_k > 0$
H_{1} left sided: $\beta_k < 0$
Assumptions
Assumptions
Difference scores are normally distributed in the population
Sample of difference scores is a simple random sample from the population of difference scores. That is, difference scores are independent of one another
In the population, the residuals are normally distributed at each combination of values of the independent variables
In the population, the standard deviation $\sigma$ of the residuals is the same for each combination of values of the independent variables (homoscedasticity)
In the population, the relationship between the independent variables and the mean of the dependent variable $\mu_y$ is linear. If this linearity assumption holds, the mean of the residuals is 0 for each combination of values of the independent variables
The residuals are independent of one another
Often ignored additional assumption:
Variables are measured without error
Also pay attention to:
Multicollinearity
Outliers
Test statistic
Test statistic
$t = \dfrac{\bar{y}  \mu_0}{s / \sqrt{N}}$
Here $\bar{y}$ is the sample mean of the difference scores, $\mu_0$ is the population mean of the difference scores according to the null hypothesis, $s$ is the sample standard deviation of the difference scores, and $N$ is the sample size (number of difference scores).
$
\begin{aligned}[t]
F &= \dfrac{\sum (\hat{y}_j  \bar{y})^2 / K}{\sum (y_j  \hat{y}_j)^2 / (N  K  1)}\\
&= \dfrac{\mbox{sum of squares model} / \mbox{degrees of freedom model}}{\mbox{sum of squares error} / \mbox{degrees of freedom error}}\\
&= \dfrac{\mbox{mean square model}}{\mbox{mean square error}}
\end{aligned}
$
where $\hat{y}_j$ is the predicted score on the dependent variable $y$ of subject $j$, $\bar{y}$ is the mean of $y$, $y_j$ is the score on $y$ of subject $j$, $N$ is the total sample size, and $K$ is the number of independent variables.
$t$ test for individual $\beta_k$:
$t = \dfrac{b_k}{SE_{b_k}}$
If only one independent variable: $SE_{b_1} = \dfrac{\sqrt{\sum (y_j  \hat{y}_j)^2 / (N  2)}}{\sqrt{\sum (x_j  \bar{x})^2}} = \dfrac{s}{\sqrt{\sum (x_j  \bar{x})^2}}$ with $s$ the sample standard deviation of the residuals, $x_j$ the score of subject $j$ on the independent variable $x$, and $\bar{x}$ the mean of $x$. For models with more than one independent variable, computing $SE_{b_k}$ is more complicated.
Note 1: mean square model is also known as mean square regression, and mean square error is also known as mean square residual.
Note 2: if there is only one independent variable in the model ($K = 1$), the $F$ test for the complete regression model is equivalent to the two sided $t$ test for $\beta_1.$
n.a.
Sample standard deviation of the residuals $s$

$\begin{aligned}
s &= \sqrt{\dfrac{\sum (y_j  \hat{y}_j)^2}{N  K  1}}\\ &= \sqrt{\dfrac{\mbox{sum of squares error}}{\mbox{degrees of freedom error}}}\\ &= \sqrt{\mbox{mean square error}}
\end{aligned}
$
$F$ distribution with $K$ (df model, numerator) and $N  K  1$ (df error, denominator) degrees of freedom
Sampling distribution of $t$:
$t$ distribution with $N  K  1$ (df error) degrees of freedom
Significant?
Significant?
Two sided:
Check if $t$ observed in sample is at least as extreme as critical value $t^*$ or
Find two sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$
Right sided:
Check if $t$ observed in sample is equal to or larger than critical value $t^*$ or
Find right sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$
Left sided:
Check if $t$ observed in sample is equal to or smaller than critical value $t^*$ or
Find left sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$
$F$ test:
Check if $F$ observed in sample is equal to or larger than critical value $F^*$ or
Find $p$ value corresponding to observed $F$ and check if it is equal to or smaller than $\alpha$
$t$ Test two sided:
Check if $t$ observed in sample is at least as extreme as critical value $t^*$ or
Find two sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$
$t$ Test right sided:
Check if $t$ observed in sample is equal to or larger than critical value $t^*$ or
Find right sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$
$t$ Test left sided:
Check if $t$ observed in sample is equal to or smaller than critical value $t^*$ or
Find left sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$
$C\%$ confidence interval for $\mu$
$C\%$ confidence interval for $\beta_k$ and for $\mu_y$, $C\%$ prediction interval for $y_{new}$
$\bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}}$
where the critical value $t^*$ is the value under the $t_{N1}$ distribution with the area $C / 100$ between $t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20).
If only one independent variable: $SE_{b_1} = \dfrac{\sqrt{\sum (y_j  \hat{y}_j)^2 / (N  2)}}{\sqrt{\sum (x_j  \bar{x})^2}} = \dfrac{s}{\sqrt{\sum (x_j  \bar{x})^2}}$
Confidence interval for $\mu_y$, the population mean of $y$ given the values on the independent variables:
$\hat{y} \pm t^* \times SE_{\hat{y}}$
If only one independent variable:
$SE_{\hat{y}} = s \sqrt{\dfrac{1}{N} + \dfrac{(x^*  \bar{x})^2}{\sum (x_j  \bar{x})^2}}$
Prediction interval for $y_{new}$, the score on $y$ of a future respondent:
$\hat{y} \pm t^* \times SE_{y_{new}}$
If only one independent variable:
$SE_{y_{new}} = s \sqrt{1 + \dfrac{1}{N} + \dfrac{(x^*  \bar{x})^2}{\sum (x_j  \bar{x})^2}}$
In all formulas, the critical value $t^*$ is the value under the $t_{N  K  1}$ distribution with the area $C / 100$ between $t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20).
Effect size
Effect size
Cohen's $d$:
Standardized difference between the sample mean of the difference scores and $\mu_0$:
$$d = \frac{\bar{y}  \mu_0}{s}$$
Cohen's $d$ indicates how many standard deviations $s$ the sample mean of the difference scores $\bar{y}$ is removed from $\mu_0.$
Complete model:
Proportion variance explained $R^2$:
Proportion variance of the dependent variable $y$ explained by the sample regression equation (the independent variables):
$$
\begin{align}
R^2 &= \dfrac{\sum (\hat{y}_j  \bar{y})^2}{\sum (y_j  \bar{y})^2}\\ &= \dfrac{\mbox{sum of squares model}}{\mbox{sum of squares total}}\\
&= 1  \dfrac{\mbox{sum of squares error}}{\mbox{sum of squares total}}\\
&= r(y, \hat{y})^2
\end{align}
$$
$R^2$ is the proportion variance explained in the sample by the sample regression equation. It is a positively biased estimate of the proportion variance explained in the population by the population regression equation, $\rho^2$. If there is only one independent variable, $R^2 = r^2$: the correlation between the independent variable $x$ and dependent variable $y$ squared.
Wherry's $R^2$ / shrunken $R^2$:
Corrects for the positive bias in $R^2$ and is equal to
$$R^2_W = 1  \frac{N  1}{N  K  1}(1  R^2)$$
$R^2_W$ is a less biased estimate than $R^2$ of the proportion variance explained in the population by the population regression equation, $\rho^2.$
Stein's $R^2$:
Estimates the proportion of variance in $y$ that we expect the current sample regression equation to explain in a different sample drawn from the same population. It is equal to
$$R^2_S = 1  \frac{(N  1)(N  2)(N + 1)}{(N  K  1)(N  K  2)(N)}(1  R^2)$$
Per independent variable:
Correlation squared $r^2_k$: the proportion of the total variance in the dependent variable $y$ that is explained by the independent variable $x_k$, not corrected for the other independent variables in the model
Semipartial correlation squared $sr^2_k$: the proportion of the total variance in the dependent variable $y$ that is uniquely explained by the independent variable $x_k$, beyond the part that is already explained by the other independent variables in the model
Partial correlation squared $pr^2_k$: the proportion of the variance in the dependent variable $y$ not explained by the other independent variables, that is uniquely explained by the independent variable $x_k$
Repeated measures ANOVA with one dichotomous within subjects factor.

Example context
Example context
Is the average difference between the mental health scores before and after an intervention different from $\mu_0 = 0$?
Can mental health be predicted from fysical health, economic class, and gender?
SPSS
SPSS
Analyze > Compare Means > PairedSamples T Test...
Put the two paired variables in the boxes below Variable 1 and Variable 2
Analyze > Regression > Linear...
Put your dependent variable in the box below Dependent and your independent (predictor) variables in the box below Independent(s)
Jamovi
Jamovi
TTests > Paired Samples TTest
Put the two paired variables in the box below Paired Variables, one on the left side of the vertical line and one on the right side of the vertical line
Under Hypothesis, select your alternative hypothesis
Regression > Linear Regression
Put your dependent variable in the box below Dependent Variable and your independent variables of interval/ratio level in the box below Covariates
If you also have code (dummy) variables as independent variables, you can put these in the box below Covariates as well
Instead of transforming your categorical independent variable(s) into code variables, you can also put the untransformed categorical independent variables in the box below Factors. Jamovi will then make the code variables for you 'behind the scenes'