Paired sample t test - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons (max. of 3) by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Paired sample $t$ test
McNemar's test
One sample $t$ test for the mean
You cannot compare more than 3 methods
Independent variableIndependent variableIndependent variable
2 paired groups2 paired groupsNone
Dependent variableDependent variableDependent variable
One quantitative of interval or ratio levelOne categorical with 2 independent groupsOne quantitative of interval or ratio level
Null hypothesisNull hypothesisNull hypothesis
H0: $\mu = \mu_0$

Here $\mu$ is the population mean of the difference scores, and $\mu_0$ is the population mean of the difference scores according to the null hypothesis, which is usually 0. A difference score is the difference between the first score of a pair and the second score of a pair.

Let's say that the scores on the dependent variable are scored 0 and 1. Then for each pair of scores, the data allow four options:

  1. First score of pair is 0, second score of pair is 0
  2. First score of pair is 0, second score of pair is 1 (switched)
  3. First score of pair is 1, second score of pair is 0 (switched)
  4. First score of pair is 1, second score of pair is 1
The null hypothesis H0 is that for each pair of scores, P(first score of pair is 0 while second score of pair is 1) = P(first score of pair is 1 while second score of pair is 0). That is, the probability that a pair of scores switches from 0 to 1 is the same as the probability that a pair of scores switches from 1 to 0.

Other formulations of the null hypothesis are:

  • H0: $\pi_1 = \pi_2$, where $\pi_1$ is the population proportion of ones for the first paired group and $\pi_2$ is the population proportion of ones for the second paired group
  • H0: for each pair of scores, P(first score of pair is 1) = P(second score of pair is 1)

H0: $\mu = \mu_0$

Here $\mu$ is the population mean, and $\mu_0$ is the population mean according to the null hypothesis.
Alternative hypothesisAlternative hypothesisAlternative hypothesis
H1 two sided: $\mu \neq \mu_0$
H1 right sided: $\mu > \mu_0$
H1 left sided: $\mu < \mu_0$

The alternative hypothesis H1 is that for each pair of scores, P(first score of pair is 0 while second score of pair is 1) $\neq$ P(first score of pair is 1 while second score of pair is 0). That is, the probability that a pair of scores switches from 0 to 1 is not the same as the probability that a pair of scores switches from 1 to 0.

Other formulations of the alternative hypothesis are:

  • H1: $\pi_1 \neq \pi_2$
  • H1: for each pair of scores, P(first score of pair is 1) $\neq$ P(second score of pair is 1)

H1 two sided: $\mu \neq \mu_0$
H1 right sided: $\mu > \mu_0$
H1 left sided: $\mu < \mu_0$
AssumptionsAssumptionsAssumptions
  • Difference scores are normally distributed in the population
  • Sample of difference scores is a simple random sample from the population of difference scores. That is, difference scores are independent of one another
  • Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
  • Scores are normally distributed in the population
  • Sample is a simple random sample from the population. That is, observations are independent of one another
Test statisticTest statisticTest statistic
$t = \dfrac{\bar{y} - \mu_0}{s / \sqrt{N}}$
Here $\bar{y}$ is the sample mean of the difference scores, $\mu_0$ is the population mean of the difference scores according to the null hypothesis, $s$ is the sample standard deviation of the difference scores, and $N$ is the sample size (number of difference scores).

The denominator $s / \sqrt{N}$ is the standard error of the sampling distribution of $\bar{y}$. The $t$ value indicates how many standard errors $\bar{y}$ is removed from $\mu_0$.
$X^2 = \dfrac{(b - c)^2}{b + c}$
Here $b$ is the number of pairs in the sample for which the first score is 0 while the second score is 1, and $c$ is the number of pairs in the sample for which the first score is 1 while the second score is 0.
$t = \dfrac{\bar{y} - \mu_0}{s / \sqrt{N}}$
Here $\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to the null hypothesis, $s$ is the sample standard deviation, and $N$ is the sample size.

The denominator $s / \sqrt{N}$ is the standard error of the sampling distribution of $\bar{y}$. The $t$ value indicates how many standard errors $\bar{y}$ is removed from $\mu_0$.
Sampling distribution of $t$ if H0 were trueSampling distribution of $X^2$ if H0 were trueSampling distribution of $t$ if H0 were true
$t$ distribution with $N - 1$ degrees of freedom

If $b + c$ is large enough (say, > 20), approximately the chi-squared distribution with 1 degree of freedom.

If $b + c$ is small, the Binomial($n$, $P$) distribution should be used, with $n = b + c$ and $P = 0.5$. In that case the test statistic becomes equal to $b$.

$t$ distribution with $N - 1$ degrees of freedom
Significant?Significant?Significant?
Two sided: Right sided: Left sided: For test statistic $X^2$:
  • Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
  • Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
If $b + c$ is small, the table for the binomial distribution should be used, with as test statistic $b$:
  • Check if $b$ observed in sample is in the rejection region or
  • Find two sided $p$ value corresponding to observed $b$ and check if it is equal to or smaller than $\alpha$
Two sided: Right sided: Left sided:
$C\%$ confidence interval for $\mu$n.a.$C\%$ confidence interval for $\mu$
$\bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}}$
where the critical value $t^*$ is the value under the $t_{N-1}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20).

The confidence interval for $\mu$ can also be used as significance test.
-$\bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}}$
where the critical value $t^*$ is the value under the $t_{N-1}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20).

The confidence interval for $\mu$ can also be used as significance test.
Effect sizen.a.Effect size
Cohen's $d$:
Standardized difference between the sample mean of the difference scores and $\mu_0$: $$d = \frac{\bar{y} - \mu_0}{s}$$ Cohen's $d$ indicates how many standard deviations $s$ the sample mean of the difference scores $\bar{y}$ is removed from $\mu_0.$
-Cohen's $d$:
Standardized difference between the sample mean and $\mu_0$: $$d = \frac{\bar{y} - \mu_0}{s}$$ Cohen's $d$ indicates how many standard deviations $s$ the sample mean $\bar{y}$ is removed from $\mu_0.$
Visual representationn.a.Visual representation
Paired sample t test
-
One sample t test
Equivalent toEquivalent ton.a.
  • One sample $t$ test on the difference scores.
  • Repeated measures ANOVA with one dichotomous within subjects factor.
-
Example contextExample contextExample context
Is the average difference between the mental health scores before and after an intervention different from $\mu_0 = 0$?Does a tv documentary about spiders change whether people are afraid (yes/no) of spiders?Is the average mental health score of office workers different from $\mu_0 = 50$?
SPSSSPSSSPSS
Analyze > Compare Means > Paired-Samples T Test...
  • Put the two paired variables in the boxes below Variable 1 and Variable 2
Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
  • Put the two paired variables in the boxes below Variable 1 and Variable 2
  • Under Test Type, select the McNemar test
Analyze > Compare Means > One-Sample T Test...
  • Put your variable in the box below Test Variable(s)
  • Fill in the value for $\mu_0$ in the box next to Test Value
JamoviJamoviJamovi
T-Tests > Paired Samples T-Test
  • Put the two paired variables in the box below Paired Variables, one on the left side of the vertical line and one on the right side of the vertical line
  • Under Hypothesis, select your alternative hypothesis
Frequencies > Paired Samples - McNemar test
  • Put one of the two paired variables in the box below Rows and the other paired variable in the box below Columns
T-Tests > One Sample T-Test
  • Put your variable in the box below Dependent Variables
  • Under Hypothesis, fill in the value for $\mu_0$ in the box next to Test Value, and select your alternative hypothesis
Practice questionsPractice questionsPractice questions