# Paired sample t test - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Paired sample $t$ test
Binomial test for a single proportion
Independent variableIndependent variable
2 paired groupsNone
Dependent variableDependent variable
One quantitative of interval or ratio levelOne categorical with 2 independent groups
Null hypothesisNull hypothesis
H0: $\mu = \mu_0$

Here $\mu$ is the population mean of the difference scores, and $\mu_0$ is the population mean of the difference scores according to the null hypothesis, which is usually 0. A difference score is the difference between the first score of a pair and the second score of a pair.
H0: $\pi = \pi_0$

Here $\pi$ is the population proportion of 'successes', and $\pi_0$ is the population proportion of successes according to the null hypothesis.
Alternative hypothesisAlternative hypothesis
H1 two sided: $\mu \neq \mu_0$
H1 right sided: $\mu > \mu_0$
H1 left sided: $\mu < \mu_0$
H1 two sided: $\pi \neq \pi_0$
H1 right sided: $\pi > \pi_0$
H1 left sided: $\pi < \pi_0$
AssumptionsAssumptions
• Difference scores are normally distributed in the population
• Sample of difference scores is a simple random sample from the population of difference scores. That is, difference scores are independent of one another
• Sample is a simple random sample from the population. That is, observations are independent of one another
Test statisticTest statistic
$t = \dfrac{\bar{y} - \mu_0}{s / \sqrt{N}}$
Here $\bar{y}$ is the sample mean of the difference scores, $\mu_0$ is the population mean of the difference scores according to the null hypothesis, $s$ is the sample standard deviation of the difference scores, and $N$ is the sample size (number of difference scores).

The denominator $s / \sqrt{N}$ is the standard error of the sampling distribution of $\bar{y}$. The $t$ value indicates how many standard errors $\bar{y}$ is removed from $\mu_0$.
$X$ = number of successes in the sample
Sampling distribution of $t$ if H0 were trueSampling distribution of $X$ if H0 were true
$t$ distribution with $N - 1$ degrees of freedomBinomial($n$, $P$) distribution.

Here $n = N$ (total sample size), and $P = \pi_0$ (population proportion according to the null hypothesis).
Significant?Significant?
Two sided:
Right sided:
Left sided:
Two sided:
• Check if $X$ observed in sample is in the rejection region or
• Find two sided $p$ value corresponding to observed $X$ and check if it is equal to or smaller than $\alpha$
Right sided:
• Check if $X$ observed in sample is in the rejection region or
• Find right sided $p$ value corresponding to observed $X$ and check if it is equal to or smaller than $\alpha$
Left sided:
• Check if $X$ observed in sample is in the rejection region or
• Find left sided $p$ value corresponding to observed $X$ and check if it is equal to or smaller than $\alpha$
$C\%$ confidence interval for $\mu$n.a.
$\bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}}$
where the critical value $t^*$ is the value under the $t_{N-1}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20).

The confidence interval for $\mu$ can also be used as significance test.
-
Effect sizen.a.
Cohen's $d$:
Standardized difference between the sample mean of the difference scores and $\mu_0$: $$d = \frac{\bar{y} - \mu_0}{s}$$ Cohen's $d$ indicates how many standard deviations $s$ the sample mean of the difference scores $\bar{y}$ is removed from $\mu_0.$
-
Visual representationn.a.
-
Equivalent ton.a.
• One sample $t$ test on the difference scores.
• Repeated measures ANOVA with one dichotomous within subjects factor.
-
Example contextExample context
Is the average difference between the mental health scores before and after an intervention different from $\mu_0 = 0$?Is the proportion of smokers amongst office workers different from $\pi_0 = 0.2$?
SPSSSPSS
Analyze > Compare Means > Paired-Samples T Test...
• Put the two paired variables in the boxes below Variable 1 and Variable 2
Analyze > Nonparametric Tests > Legacy Dialogs > Binomial...
• Put your dichotomous variable in the box below Test Variable List
• Fill in the value for $\pi_0$ in the box next to Test Proportion
JamoviJamovi
T-Tests > Paired Samples T-Test
• Put the two paired variables in the box below Paired Variables, one on the left side of the vertical line and one on the right side of the vertical line
• Under Hypothesis, select your alternative hypothesis
Frequencies > 2 Outcomes - Binomial test
• Put your dichotomous variable in the white box at the right
• Fill in the value for $\pi_0$ in the box next to Test value
• Under Hypothesis, select your alternative hypothesis
Practice questionsPractice questions