Two sample z test - overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table
Two sample $z$ test | Spearman's rho |
|
---|---|---|
Independent/grouping variable | Variable 1 | |
One categorical with 2 independent groups | One of ordinal level | |
Dependent variable | Variable 2 | |
One quantitative of interval or ratio level | One of ordinal level | |
Null hypothesis | Null hypothesis | |
H0: $\mu_1 = \mu_2$
Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2. | H0: $\rho_s = 0$
Here $\rho_s$ is the Spearman correlation in the population. The Spearman correlation is a measure for the strength and direction of the monotonic relationship between two variables of at least ordinal measurement level. In words, the null hypothesis would be: H0: there is no monotonic relationship between the two variables in the population. | |
Alternative hypothesis | Alternative hypothesis | |
H1 two sided: $\mu_1 \neq \mu_2$ H1 right sided: $\mu_1 > \mu_2$ H1 left sided: $\mu_1 < \mu_2$ | H1 two sided: $\rho_s \neq 0$ H1 right sided: $\rho_s > 0$ H1 left sided: $\rho_s < 0$ | |
Assumptions | Assumptions | |
|
| |
Test statistic | Test statistic | |
$z = \dfrac{(\bar{y}_1 - \bar{y}_2) - 0}{\sqrt{\dfrac{\sigma^2_1}{n_1} + \dfrac{\sigma^2_2}{n_2}}} = \dfrac{\bar{y}_1 - \bar{y}_2}{\sqrt{\dfrac{\sigma^2_1}{n_1} + \dfrac{\sigma^2_2}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $\sigma^2_1$ is the population variance in population 1, $\sigma^2_2$ is the population variance in population 2, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis. The denominator $\sqrt{\frac{\sigma^2_1}{n_1} + \frac{\sigma^2_2}{n_2}}$ is the standard deviation of the sampling distribution of $\bar{y}_1 - \bar{y}_2$. The $z$ value indicates how many of these standard deviations $\bar{y}_1 - \bar{y}_2$ is removed from 0. Note: we could just as well compute $\bar{y}_2 - \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$. | $t = \dfrac{r_s \times \sqrt{N - 2}}{\sqrt{1 - r_s^2}} $ Here $r_s$ is the sample Spearman correlation and $N$ is the sample size. The sample Spearman correlation $r_s$ is equal to the Pearson correlation applied to the rank scores. | |
Sampling distribution of $z$ if H0 were true | Sampling distribution of $t$ if H0 were true | |
Standard normal distribution | Approximately the $t$ distribution with $N - 2$ degrees of freedom | |
Significant? | Significant? | |
Two sided:
| Two sided:
| |
$C\%$ confidence interval for $\mu_1 - \mu_2$ | n.a. | |
$(\bar{y}_1 - \bar{y}_2) \pm z^* \times \sqrt{\dfrac{\sigma^2_1}{n_1} + \dfrac{\sigma^2_2}{n_2}}$
where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval). The confidence interval for $\mu_1 - \mu_2$ can also be used as significance test. | - | |
Visual representation | n.a. | |
![]() | - | |
Example context | Example context | |
Is the average mental health score different between men and women? Assume that in the population, the standard devation of the mental health scores is $\sigma_1 = 2$ amongst men and $\sigma_2 = 2.5$ amongst women. | Is there a monotonic relationship between physical health and mental health? | |
n.a. | SPSS | |
- | Analyze > Correlate > Bivariate...
| |
n.a. | Jamovi | |
- | Regression > Correlation Matrix
| |
Practice questions | Practice questions | |