# Two sample t test - equal variances not assumed - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Two sample $t$ test - equal variances not assumed
Two sample $t$ test - equal variances assumed
Sign test
Independent/grouping variableIndependent/grouping variableIndependent variable
One categorical with 2 independent groupsOne categorical with 2 independent groups2 paired groups
Dependent variableDependent variableDependent variable
One quantitative of interval or ratio levelOne quantitative of interval or ratio levelOne of ordinal level
Null hypothesisNull hypothesisNull hypothesis
H0: $\mu_1 = \mu_2$

Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2.
H0: $\mu_1 = \mu_2$

Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2.
• H0: P(first score of a pair exceeds second score of a pair) = P(second score of a pair exceeds first score of a pair)
If the dependent variable is measured on a continuous scale, this can also be formulated as:
• H0: the population median of the difference scores is equal to zero
A difference score is the difference between the first score of a pair and the second score of a pair.
Alternative hypothesisAlternative hypothesisAlternative hypothesis
H1 two sided: $\mu_1 \neq \mu_2$
H1 right sided: $\mu_1 > \mu_2$
H1 left sided: $\mu_1 < \mu_2$
H1 two sided: $\mu_1 \neq \mu_2$
H1 right sided: $\mu_1 > \mu_2$
H1 left sided: $\mu_1 < \mu_2$
• H1 two sided: P(first score of a pair exceeds second score of a pair) $\neq$ P(second score of a pair exceeds first score of a pair)
• H1 right sided: P(first score of a pair exceeds second score of a pair) > P(second score of a pair exceeds first score of a pair)
• H1 left sided: P(first score of a pair exceeds second score of a pair) < P(second score of a pair exceeds first score of a pair)
If the dependent variable is measured on a continuous scale, this can also be formulated as:
• H1 two sided: the population median of the difference scores is different from zero
• H1 right sided: the population median of the difference scores is larger than zero
• H1 left sided: the population median of the difference scores is smaller than zero
AssumptionsAssumptionsAssumptions
• Within each population, the scores on the dependent variable are normally distributed
• Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2. That is, within and between groups, observations are independent of one another
• Within each population, the scores on the dependent variable are normally distributed
• The standard deviation of the scores on the dependent variable is the same in both populations: $\sigma_1 = \sigma_2$
• Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2. That is, within and between groups, observations are independent of one another
• Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
Test statisticTest statisticTest statistic
$t = \dfrac{(\bar{y}_1 - \bar{y}_2) - 0}{\sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}} = \dfrac{\bar{y}_1 - \bar{y}_2}{\sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $s^2_1$ is the sample variance in group 1, $s^2_2$ is the sample variance in group 2, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis.

The denominator $\sqrt{\frac{s^2_1}{n_1} + \frac{s^2_2}{n_2}}$ is the standard error of the sampling distribution of $\bar{y}_1 - \bar{y}_2$. The $t$ value indicates how many standard errors $\bar{y}_1 - \bar{y}_2$ is removed from 0.

Note: we could just as well compute $\bar{y}_2 - \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$.
$t = \dfrac{(\bar{y}_1 - \bar{y}_2) - 0}{s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}} = \dfrac{\bar{y}_1 - \bar{y}_2}{s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $s_p$ is the pooled standard deviation, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis.

The denominator $s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}$ is the standard error of the sampling distribution of $\bar{y}_1 - \bar{y}_2$. The $t$ value indicates how many standard errors $\bar{y}_1 - \bar{y}_2$ is removed from 0.

Note: we could just as well compute $\bar{y}_2 - \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$.
$W =$ number of difference scores that is larger than 0
n.a.Pooled standard deviationn.a.
-$s_p = \sqrt{\dfrac{(n_1 - 1) \times s^2_1 + (n_2 - 1) \times s^2_2}{n_1 + n_2 - 2}}$-
Sampling distribution of $t$ if H0 were trueSampling distribution of $t$ if H0 were trueSampling distribution of $W$ if H0 were true
Approximately the $t$ distribution with $k$ degrees of freedom, with $k$ equal to
$k = \dfrac{\Bigg(\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}\Bigg)^2}{\dfrac{1}{n_1 - 1} \Bigg(\dfrac{s^2_1}{n_1}\Bigg)^2 + \dfrac{1}{n_2 - 1} \Bigg(\dfrac{s^2_2}{n_2}\Bigg)^2}$
or
$k$ = the smaller of $n_1$ - 1 and $n_2$ - 1

First definition of $k$ is used by computer programs, second definition is often used for hand calculations.
$t$ distribution with $n_1 + n_2 - 2$ degrees of freedomThe exact distribution of $W$ under the null hypothesis is the Binomial($n$, $P$) distribution, with $n =$ number of positive differences $+$ number of negative differences, and $P = 0.5$.

If $n$ is large, $W$ is approximately normally distributed under the null hypothesis, with mean $nP = n \times 0.5$ and standard deviation $\sqrt{nP(1-P)} = \sqrt{n \times 0.5(1 - 0.5)}$. Hence, if $n$ is large, the standardized test statistic $$z = \frac{W - n \times 0.5}{\sqrt{n \times 0.5(1 - 0.5)}}$$ follows approximately the standard normal distribution if the null hypothesis were true.
Significant?Significant?Significant?
Two sided:
Right sided:
Left sided:
Two sided:
Right sided:
Left sided:
If $n$ is small, the table for the binomial distribution should be used:
Two sided:
• Check if $W$ observed in sample is in the rejection region or
• Find two sided $p$ value corresponding to observed $W$ and check if it is equal to or smaller than $\alpha$
Right sided:
• Check if $W$ observed in sample is in the rejection region or
• Find right sided $p$ value corresponding to observed $W$ and check if it is equal to or smaller than $\alpha$
Left sided:
• Check if $W$ observed in sample is in the rejection region or
• Find left sided $p$ value corresponding to observed $W$ and check if it is equal to or smaller than $\alpha$

If $n$ is large, the table for standard normal probabilities can be used:
Two sided:
Right sided:
Left sided:
Approximate $C\%$ confidence interval for $\mu_1 - \mu_2$$C\% confidence interval for \mu_1 - \mu_2n.a. (\bar{y}_1 - \bar{y}_2) \pm t^* \times \sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}} where the critical value t^* is the value under the t_{k} distribution with the area C / 100 between -t^* and t^* (e.g. t^* = 2.086 for a 95% confidence interval when df = 20). The confidence interval for \mu_1 - \mu_2 can also be used as significance test. (\bar{y}_1 - \bar{y}_2) \pm t^* \times s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}} where the critical value t^* is the value under the t_{n_1 + n_2 - 2} distribution with the area C / 100 between -t^* and t^* (e.g. t^* = 2.086 for a 95% confidence interval when df = 20). The confidence interval for \mu_1 - \mu_2 can also be used as significance test. - n.a.Effect sizen.a. -Cohen's d: Standardized difference between the mean in group 1 and in group 2:$$d = \frac{\bar{y}_1 - \bar{y}_2}{s_p}$$Cohen's$d$indicates how many standard deviations$s_p$the two sample means are removed from each other. - Visual representationVisual representationn.a. - n.a.Equivalent toEquivalent to -One way ANOVA with an independent variable with 2 levels ($I$= 2): • two sided two sample$t$test is equivalent to ANOVA$F$test when$I$= 2 • two sample$t$test is equivalent to$t$test for contrast when$I$= 2 • two sample$t$test is equivalent to$t$test multiple comparisons when$I$= 2 OLS regression with one categorical independent variable with 2 levels: • two sided two sample$t$test is equivalent to$F$test regression model • two sample$t$test is equivalent to$t$test for regression coefficient$\beta_1$Two sided sign test is equivalent to Example contextExample contextExample context Is the average mental health score different between men and women?Is the average mental health score different between men and women? Assume that in the population, the standard deviation of mental health scores is equal amongst men and women.Do people tend to score higher on mental health after a mindfulness course? SPSSSPSSSPSS Analyze > Compare Means > Independent-Samples T Test... • Put your dependent (quantitative) variable in the box below Test Variable(s) and your independent (grouping) variable in the box below Grouping Variable • Click on the Define Groups... button. If you can't click on it, first click on the grouping variable so its background turns yellow • Fill in the value you have used to indicate your first group in the box next to Group 1, and the value you have used to indicate your second group in the box next to Group 2 • Continue and click OK Analyze > Compare Means > Independent-Samples T Test... • Put your dependent (quantitative) variable in the box below Test Variable(s) and your independent (grouping) variable in the box below Grouping Variable • Click on the Define Groups... button. If you can't click on it, first click on the grouping variable so its background turns yellow • Fill in the value you have used to indicate your first group in the box next to Group 1, and the value you have used to indicate your second group in the box next to Group 2 • Continue and click OK Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples... • Put the two paired variables in the boxes below Variable 1 and Variable 2 • Under Test Type, select the Sign test JamoviJamoviJamovi T-Tests > Independent Samples T-Test • Put your dependent (quantitative) variable in the box below Dependent Variables and your independent (grouping) variable in the box below Grouping Variable • Under Tests, select Welch's • Under Hypothesis, select your alternative hypothesis T-Tests > Independent Samples T-Test • Put your dependent (quantitative) variable in the box below Dependent Variables and your independent (grouping) variable in the box below Grouping Variable • Under Tests, select Student's (selected by default) • Under Hypothesis, select your alternative hypothesis Jamovi does not have a specific option for the sign test. However, you can do the Friedman test instead. The$p$value resulting from this Friedman test is equivalent to the two sided$p\$ value that would have resulted from the sign test. Go to:

ANOVA > Repeated Measures ANOVA - Friedman
• Put the two paired variables in the box below Measures
Practice questionsPractice questionsPractice questions