Two sample t test  equal variances not assumed  overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
Two sample $t$ test  equal variances not assumed  Two sample $t$ test  equal variances assumed  Paired sample $t$ test 


Independent/grouping variable  Independent/grouping variable  Independent variable  
One categorical with 2 independent groups  One categorical with 2 independent groups  2 paired groups  
Dependent variable  Dependent variable  Dependent variable  
One quantitative of interval or ratio level  One quantitative of interval or ratio level  One quantitative of interval or ratio level  
Null hypothesis  Null hypothesis  Null hypothesis  
H_{0}: $\mu_1 = \mu_2$
Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2.  H_{0}: $\mu_1 = \mu_2$
Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2.  H_{0}: $\mu = \mu_0$
Here $\mu$ is the population mean of the difference scores, and $\mu_0$ is the population mean of the difference scores according to the null hypothesis, which is usually 0. A difference score is the difference between the first score of a pair and the second score of a pair.  
Alternative hypothesis  Alternative hypothesis  Alternative hypothesis  
H_{1} two sided: $\mu_1 \neq \mu_2$ H_{1} right sided: $\mu_1 > \mu_2$ H_{1} left sided: $\mu_1 < \mu_2$  H_{1} two sided: $\mu_1 \neq \mu_2$ H_{1} right sided: $\mu_1 > \mu_2$ H_{1} left sided: $\mu_1 < \mu_2$  H_{1} two sided: $\mu \neq \mu_0$ H_{1} right sided: $\mu > \mu_0$ H_{1} left sided: $\mu < \mu_0$  
Assumptions  Assumptions  Assumptions  


 
Test statistic  Test statistic  Test statistic  
$t = \dfrac{(\bar{y}_1  \bar{y}_2)  0}{\sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}} = \dfrac{\bar{y}_1  \bar{y}_2}{\sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $s^2_1$ is the sample variance in group 1, $s^2_2$ is the sample variance in group 2, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis. The denominator $\sqrt{\frac{s^2_1}{n_1} + \frac{s^2_2}{n_2}}$ is the standard error of the sampling distribution of $\bar{y}_1  \bar{y}_2$. The $t$ value indicates how many standard errors $\bar{y}_1  \bar{y}_2$ is removed from 0. Note: we could just as well compute $\bar{y}_2  \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$.  $t = \dfrac{(\bar{y}_1  \bar{y}_2)  0}{s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}} = \dfrac{\bar{y}_1  \bar{y}_2}{s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $s_p$ is the pooled standard deviation, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis. The denominator $s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}$ is the standard error of the sampling distribution of $\bar{y}_1  \bar{y}_2$. The $t$ value indicates how many standard errors $\bar{y}_1  \bar{y}_2$ is removed from 0. Note: we could just as well compute $\bar{y}_2  \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$.  $t = \dfrac{\bar{y}  \mu_0}{s / \sqrt{N}}$
Here $\bar{y}$ is the sample mean of the difference scores, $\mu_0$ is the population mean of the difference scores according to the null hypothesis, $s$ is the sample standard deviation of the difference scores, and $N$ is the sample size (number of difference scores). The denominator $s / \sqrt{N}$ is the standard error of the sampling distribution of $\bar{y}$. The $t$ value indicates how many standard errors $\bar{y}$ is removed from $\mu_0$.  
n.a.  Pooled standard deviation  n.a.  
  $s_p = \sqrt{\dfrac{(n_1  1) \times s^2_1 + (n_2  1) \times s^2_2}{n_1 + n_2  2}}$    
Sampling distribution of $t$ if H_{0} were true  Sampling distribution of $t$ if H_{0} were true  Sampling distribution of $t$ if H_{0} were true  
Approximately the $t$ distribution with $k$ degrees of freedom, with $k$ equal to $k = \dfrac{\Bigg(\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}\Bigg)^2}{\dfrac{1}{n_1  1} \Bigg(\dfrac{s^2_1}{n_1}\Bigg)^2 + \dfrac{1}{n_2  1} \Bigg(\dfrac{s^2_2}{n_2}\Bigg)^2}$ or $k$ = the smaller of $n_1$  1 and $n_2$  1 First definition of $k$ is used by computer programs, second definition is often used for hand calculations.  $t$ distribution with $n_1 + n_2  2$ degrees of freedom  $t$ distribution with $N  1$ degrees of freedom  
Significant?  Significant?  Significant?  
Two sided:
 Two sided:
 Two sided:
 
Approximate $C\%$ confidence interval for $\mu_1  \mu_2$  $C\%$ confidence interval for $\mu_1  \mu_2$  $C\%$ confidence interval for $\mu$  
$(\bar{y}_1  \bar{y}_2) \pm t^* \times \sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}$
where the critical value $t^*$ is the value under the $t_{k}$ distribution with the area $C / 100$ between $t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). The confidence interval for $\mu_1  \mu_2$ can also be used as significance test.  $(\bar{y}_1  \bar{y}_2) \pm t^* \times s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}$
where the critical value $t^*$ is the value under the $t_{n_1 + n_2  2}$ distribution with the area $C / 100$ between $t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). The confidence interval for $\mu_1  \mu_2$ can also be used as significance test.  $\bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}}$
where the critical value $t^*$ is the value under the $t_{N1}$ distribution with the area $C / 100$ between $t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). The confidence interval for $\mu$ can also be used as significance test.  
n.a.  Effect size  Effect size  
  Cohen's $d$: Standardized difference between the mean in group $1$ and in group $2$: $$d = \frac{\bar{y}_1  \bar{y}_2}{s_p}$$ Cohen's $d$ indicates how many standard deviations $s_p$ the two sample means are removed from each other.  Cohen's $d$: Standardized difference between the sample mean of the difference scores and $\mu_0$: $$d = \frac{\bar{y}  \mu_0}{s}$$ Cohen's $d$ indicates how many standard deviations $s$ the sample mean of the difference scores $\bar{y}$ is removed from $\mu_0.$  
Visual representation  Visual representation  Visual representation  
n.a.  Equivalent to  Equivalent to  
  One way ANOVA with an independent variable with 2 levels ($I$ = 2):

 
Example context  Example context  Example context  
Is the average mental health score different between men and women?  Is the average mental health score different between men and women? Assume that in the population, the standard deviation of mental health scores is equal amongst men and women.  Is the average difference between the mental health scores before and after an intervention different from $\mu_0 = 0$?  
SPSS  SPSS  SPSS  
Analyze > Compare Means > IndependentSamples T Test...
 Analyze > Compare Means > IndependentSamples T Test...
 Analyze > Compare Means > PairedSamples T Test...
 
Jamovi  Jamovi  Jamovi  
TTests > Independent Samples TTest
 TTests > Independent Samples TTest
 TTests > Paired Samples TTest
 
Practice questions  Practice questions  Practice questions  