Two sample t test - equal variances not assumed - overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table
Two sample $t$ test - equal variances not assumed | One way ANOVA | Friedman test | Chi-squared test for the relationship between two categorical variables | Cochran's Q test |
|
---|---|---|---|---|---|
Independent/grouping variable | Independent/grouping variable | Independent/grouping variable | Independent /column variable | Independent/grouping variable | |
One categorical with 2 independent groups | One categorical with $I$ independent groups ($I \geqslant 2$) | One within subject factor ($\geq 2$ related groups) | One categorical with $I$ independent groups ($I \geqslant 2$) | One within subject factor ($\geq 2$ related groups) | |
Dependent variable | Dependent variable | Dependent variable | Dependent /row variable | Dependent variable | |
One quantitative of interval or ratio level | One quantitative of interval or ratio level | One of ordinal level | One categorical with $J$ independent groups ($J \geqslant 2$) | One categorical with 2 independent groups | |
Null hypothesis | Null hypothesis | Null hypothesis | Null hypothesis | Null hypothesis | |
H0: $\mu_1 = \mu_2$
Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2. | ANOVA $F$ test:
| H0: the population scores in any of the related groups are not systematically higher or lower than the population scores in any of the other related groups
Usually the related groups are the different measurement points. Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher. | H0: there is no association between the row and column variable More precisely, if there are $I$ independent random samples of size $n_i$ from each of $I$ populations, defined by the independent variable:
| H0: $\pi_1 = \pi_2 = \ldots = \pi_I$
Here $\pi_1$ is the population proportion of 'successes' for group 1, $\pi_2$ is the population proportion of 'successes' for group 2, and $\pi_I$ is the population proportion of 'successes' for group $I.$ | |
Alternative hypothesis | Alternative hypothesis | Alternative hypothesis | Alternative hypothesis | Alternative hypothesis | |
H1 two sided: $\mu_1 \neq \mu_2$ H1 right sided: $\mu_1 > \mu_2$ H1 left sided: $\mu_1 < \mu_2$ | ANOVA $F$ test:
| H1: the population scores in some of the related groups are systematically higher or lower than the population scores in other related groups | H1: there is an association between the row and column variable More precisely, if there are $I$ independent random samples of size $n_i$ from each of $I$ populations, defined by the independent variable:
| H1: not all population proportions are equal | |
Assumptions | Assumptions | Assumptions | Assumptions | Assumptions | |
|
|
|
|
| |
Test statistic | Test statistic | Test statistic | Test statistic | Test statistic | |
$t = \dfrac{(\bar{y}_1 - \bar{y}_2) - 0}{\sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}} = \dfrac{\bar{y}_1 - \bar{y}_2}{\sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $s^2_1$ is the sample variance in group 1, $s^2_2$ is the sample variance in group 2, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis. The denominator $\sqrt{\frac{s^2_1}{n_1} + \frac{s^2_2}{n_2}}$ is the standard error of the sampling distribution of $\bar{y}_1 - \bar{y}_2$. The $t$ value indicates how many standard errors $\bar{y}_1 - \bar{y}_2$ is removed from 0. Note: we could just as well compute $\bar{y}_2 - \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$. | ANOVA $F$ test:
| $Q = \dfrac{12}{N \times k(k + 1)} \sum R^2_i - 3 \times N(k + 1)$
Here $N$ is the number of 'blocks' (usually the subjects - so if you have 4 repeated measurements for 60 subjects, $N$ equals 60), $k$ is the number of related groups (usually the number of repeated measurements), and $R_i$ is the sum of ranks in group $i$. Remember that multiplication precedes addition, so first compute $\frac{12}{N \times k(k + 1)} \times \sum R^2_i$ and then subtract $3 \times N(k + 1)$. Note: if ties are present in the data, the formula for $Q$ is more complicated. | $X^2 = \sum{\frac{(\mbox{observed cell count} - \mbox{expected cell count})^2}{\mbox{expected cell count}}}$
Here for each cell, the expected cell count = $\dfrac{\mbox{row total} \times \mbox{column total}}{\mbox{total sample size}}$, the observed cell count is the observed sample count in that same cell, and the sum is over all $I \times J$ cells. | If a failure is scored as 0 and a success is scored as 1:
$Q = k(k - 1) \dfrac{\sum_{groups} \Big (\mbox{group total} - \frac{\mbox{grand total}}{k} \Big)^2}{\sum_{blocks} \mbox{block total} \times (k - \mbox{block total})}$ Here $k$ is the number of related groups (usually the number of repeated measurements), a group total is the sum of the scores in a group, a block total is the sum of the scores in a block (usually a subject), and the grand total is the sum of all the scores. Before computing $Q$, first exclude blocks with equal scores in all $k$ groups. | |
n.a. | Pooled standard deviation | n.a. | n.a. | n.a. | |
- | $
\begin{aligned}
s_p &= \sqrt{\dfrac{(n_1 - 1) \times s^2_1 + (n_2 - 1) \times s^2_2 + \ldots + (n_I - 1) \times s^2_I}{N - I}}\\
&= \sqrt{\dfrac{\sum\nolimits_{subjects} (\mbox{subject's score} - \mbox{its group mean})^2}{N - I}}\\
&= \sqrt{\dfrac{\mbox{sum of squares error}}{\mbox{degrees of freedom error}}}\\
&= \sqrt{\mbox{mean square error}}
\end{aligned}
$
Here $s^2_i$ is the variance in group $i.$ | - | - | - | |
Sampling distribution of $t$ if H0 were true | Sampling distribution of $F$ and of $t$ if H0 were true | Sampling distribution of $Q$ if H0 were true | Sampling distribution of $X^2$ if H0 were true | Sampling distribution of $Q$ if H0 were true | |
Approximately the $t$ distribution with $k$ degrees of freedom, with $k$ equal to $k = \dfrac{\Bigg(\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}\Bigg)^2}{\dfrac{1}{n_1 - 1} \Bigg(\dfrac{s^2_1}{n_1}\Bigg)^2 + \dfrac{1}{n_2 - 1} \Bigg(\dfrac{s^2_2}{n_2}\Bigg)^2}$ or $k$ = the smaller of $n_1$ - 1 and $n_2$ - 1 First definition of $k$ is used by computer programs, second definition is often used for hand calculations. | Sampling distribution of $F$:
| If the number of blocks $N$ is large, approximately the chi-squared distribution with $k - 1$ degrees of freedom.
For small samples, the exact distribution of $Q$ should be used. | Approximately the chi-squared distribution with $(I - 1) \times (J - 1)$ degrees of freedom | If the number of blocks (usually the number of subjects) is large, approximately the chi-squared distribution with $k - 1$ degrees of freedom | |
Significant? | Significant? | Significant? | Significant? | Significant? | |
Two sided:
| $F$ test:
$t$ Test for contrast two sided:
$t$ Test multiple comparisons two sided:
| If the number of blocks $N$ is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
|
| If the number of blocks is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
| |
Approximate $C\%$ confidence interval for $\mu_1 - \mu_2$ | $C\%$ confidence interval for $\Psi$, for $\mu_g - \mu_h$, and for $\mu_i$ | n.a. | n.a. | n.a. | |
$(\bar{y}_1 - \bar{y}_2) \pm t^* \times \sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}$
where the critical value $t^*$ is the value under the $t_{k}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). The confidence interval for $\mu_1 - \mu_2$ can also be used as significance test. | Confidence interval for $\Psi$ (contrast):
| - | - | - | |
n.a. | Effect size | n.a. | n.a. | n.a. | |
- |
| - | - | - | |
Visual representation | n.a. | n.a. | n.a. | n.a. | |
![]() | - | - | - | - | |
n.a. | ANOVA table | n.a. | n.a. | n.a. | |
- | ![]() Click the link for a step by step explanation of how to compute the sum of squares. | - | - | - | |
n.a. | Equivalent to | n.a. | n.a. | Equivalent to | |
- | OLS regression with one categorical independent variable transformed into $I - 1$ code variables:
| - | - | Friedman test, with a categorical dependent variable consisting of two independent groups. | |
Example context | Example context | Example context | Example context | Example context | |
Is the average mental health score different between men and women? | Is the average mental health score different between people from a low, moderate, and high economic class? | Is there a difference in depression level between measurement point 1 (pre-intervention), measurement point 2 (1 week post-intervention), and measurement point 3 (6 weeks post-intervention)? | Is there an association between economic class and gender? Is the distribution of economic class different between men and women? | Subjects perform three different tasks, which they can either perform correctly or incorrectly. Is there a difference in task performance between the three different tasks? | |
SPSS | SPSS | SPSS | SPSS | SPSS | |
Analyze > Compare Means > Independent-Samples T Test...
| Analyze > Compare Means > One-Way ANOVA...
Analyze > General Linear Model > Univariate...
| Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
| Analyze > Descriptive Statistics > Crosstabs...
| Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
| |
Jamovi | Jamovi | Jamovi | Jamovi | Jamovi | |
T-Tests > Independent Samples T-Test
| ANOVA > ANOVA
| ANOVA > Repeated Measures ANOVA - Friedman
| Frequencies > Independent Samples - $\chi^2$ test of association
| Jamovi does not have a specific option for the Cochran's Q test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the $p$ value that would have resulted from the Cochran's Q test. Go to:
ANOVA > Repeated Measures ANOVA - Friedman
| |
Practice questions | Practice questions | Practice questions | Practice questions | Practice questions | |