Two sample t test - equal variances not assumed - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons (max. of 3) by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Two sample $t$ test - equal variances not assumed
Kruskal-Wallis test
Paired sample $t$ test
One way ANOVA
Independent/grouping variableIndependent/grouping variableIndependent variableIndependent/grouping variable
One categorical with 2 independent groupsOne categorical with $I$ independent groups ($I \geqslant 2$)2 paired groupsOne categorical with $I$ independent groups ($I \geqslant 2$)
Dependent variableDependent variableDependent variableDependent variable
One quantitative of interval or ratio levelOne of ordinal levelOne quantitative of interval or ratio levelOne quantitative of interval or ratio level
Null hypothesisNull hypothesisNull hypothesisNull hypothesis
H0: $\mu_1 = \mu_2$

Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2.
If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in all $I$ populations:
  • H0: the population medians for the $I$ groups are equal
Else:
Formulation 1:
  • H0: the population scores in any of the $I$ groups are not systematically higher or lower than the population scores in any of the other groups
Formulation 2:
  • H0: P(an observation from population $g$ exceeds an observation from population $h$) = P(an observation from population $h$ exceeds an observation from population $g$), for each pair of groups.
Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher.
H0: $\mu = \mu_0$

Here $\mu$ is the population mean of the difference scores, and $\mu_0$ is the population mean of the difference scores according to the null hypothesis, which is usually 0. A difference score is the difference between the first score of a pair and the second score of a pair.
ANOVA $F$ test:
  • H0: $\mu_1 = \mu_2 = \ldots = \mu_I$
    $\mu_1$ is the population mean for group 1; $\mu_2$ is the population mean for group 2; $\mu_I$ is the population mean for group $I$
$t$ Test for contrast:
  • H0: $\Psi = 0$
    $\Psi$ is the population contrast, defined as $\Psi = \sum a_i\mu_i$. Here $\mu_i$ is the population mean for group $i$ and $a_i$ is the coefficient for $\mu_i$. The coefficients $a_i$ sum to 0.
$t$ Test multiple comparisons:
  • H0: $\mu_g = \mu_h$
    $\mu_g$ is the population mean for group $g$; $\mu_h$ is the population mean for group $h$
Alternative hypothesisAlternative hypothesisAlternative hypothesisAlternative hypothesis
H1 two sided: $\mu_1 \neq \mu_2$
H1 right sided: $\mu_1 > \mu_2$
H1 left sided: $\mu_1 < \mu_2$
If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in all $I$ populations:
  • H1: not all of the population medians for the $I$ groups are equal
Else:
Formulation 1:
  • H1: the poplation scores in some groups are systematically higher or lower than the population scores in other groups
Formulation 2:
  • H1: for at least one pair of groups:
    P(an observation from population $g$ exceeds an observation from population $h$) $\neq$ P(an observation from population $h$ exceeds an observation from population $g$)
H1 two sided: $\mu \neq \mu_0$
H1 right sided: $\mu > \mu_0$
H1 left sided: $\mu < \mu_0$
ANOVA $F$ test:
  • H1: not all population means are equal
$t$ Test for contrast:
  • H1 two sided: $\Psi \neq 0$
  • H1 right sided: $\Psi > 0$
  • H1 left sided: $\Psi < 0$
$t$ Test multiple comparisons:
  • H1 - usually two sided: $\mu_g \neq \mu_h$
AssumptionsAssumptionsAssumptionsAssumptions
  • Within each population, the scores on the dependent variable are normally distributed
  • Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2. That is, within and between groups, observations are independent of one another
  • Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2, $\ldots$, group $I$ sample is an independent SRS from population $I$. That is, within and between groups, observations are independent of one another
  • Difference scores are normally distributed in the population
  • Sample of difference scores is a simple random sample from the population of difference scores. That is, difference scores are independent of one another
  • Within each population, the scores on the dependent variable are normally distributed
  • The standard deviation of the scores on the dependent variable is the same in each of the populations: $\sigma_1 = \sigma_2 = \ldots = \sigma_I$
  • Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2, $\ldots$, group $I$ sample is an independent SRS from population $I$. That is, within and between groups, observations are independent of one another
Test statisticTest statisticTest statisticTest statistic
$t = \dfrac{(\bar{y}_1 - \bar{y}_2) - 0}{\sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}} = \dfrac{\bar{y}_1 - \bar{y}_2}{\sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $s^2_1$ is the sample variance in group 1, $s^2_2$ is the sample variance in group 2, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis.

The denominator $\sqrt{\frac{s^2_1}{n_1} + \frac{s^2_2}{n_2}}$ is the standard error of the sampling distribution of $\bar{y}_1 - \bar{y}_2$. The $t$ value indicates how many standard errors $\bar{y}_1 - \bar{y}_2$ is removed from 0.

Note: we could just as well compute $\bar{y}_2 - \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$.

$H = \dfrac{12}{N (N + 1)} \sum \dfrac{R^2_i}{n_i} - 3(N + 1)$

Here $N$ is the total sample size, $R_i$ is the sum of ranks in group $i$, and $n_i$ is the sample size of group $i$. Remember that multiplication precedes addition, so first compute $\frac{12}{N (N + 1)} \times \sum \frac{R^2_i}{n_i}$ and then subtract $3(N + 1)$.

Note: if ties are present in the data, the formula for $H$ is more complicated.
$t = \dfrac{\bar{y} - \mu_0}{s / \sqrt{N}}$
Here $\bar{y}$ is the sample mean of the difference scores, $\mu_0$ is the population mean of the difference scores according to the null hypothesis, $s$ is the sample standard deviation of the difference scores, and $N$ is the sample size (number of difference scores).

The denominator $s / \sqrt{N}$ is the standard error of the sampling distribution of $\bar{y}$. The $t$ value indicates how many standard errors $\bar{y}$ is removed from $\mu_0$.
ANOVA $F$ test:
  • $\begin{aligned}[t] F &= \dfrac{\sum\nolimits_{subjects} (\mbox{subject's group mean} - \mbox{overall mean})^2 / (I - 1)}{\sum\nolimits_{subjects} (\mbox{subject's score} - \mbox{its group mean})^2 / (N - I)}\\ &= \dfrac{\mbox{sum of squares between} / \mbox{degrees of freedom between}}{\mbox{sum of squares error} / \mbox{degrees of freedom error}}\\ &= \dfrac{\mbox{mean square between}}{\mbox{mean square error}} \end{aligned} $
    where $N$ is the total sample size, and $I$ is the number of groups.
    Note: mean square between is also known as mean square model, and mean square error is also known as mean square residual or mean square within.
$t$ Test for contrast:
  • $t = \dfrac{c}{s_p\sqrt{\sum \dfrac{a^2_i}{n_i}}}$
    Here $c$ is the sample estimate of the population contrast $\Psi$: $c = \sum a_i\bar{y}_i$, with $\bar{y}_i$ the sample mean in group $i$. $s_p$ is the pooled standard deviation based on all the $I$ groups in the ANOVA, $a_i$ is the contrast coefficient for group $i$, and $n_i$ is the sample size of group $i$.
    Note that if the contrast compares only two group means with each other, this $t$ statistic is very similar to the two sample $t$ statistic (assuming equal population standard deviations). In that case the only difference is that we now base the pooled standard deviation on all the $I$ groups, which affects the $t$ value if $I \geqslant 3$. It also affects the corresponding degrees of freedom.
$t$ Test multiple comparisons:
  • $t = \dfrac{\bar{y}_g - \bar{y}_h}{s_p\sqrt{\dfrac{1}{n_g} + \dfrac{1}{n_h}}}$
    $\bar{y}_g$ is the sample mean in group $g$, $\bar{y}_h$ is the sample mean in group $h$, $s_p$ is the pooled standard deviation based on all the $I$ groups in the ANOVA, $n_g$ is the sample size of group $g$, and $n_h$ is the sample size of group $h$.
    Note that this $t$ statistic is very similar to the two sample $t$ statistic (assuming equal population standard deviations). The only difference is that we now base the pooled standard deviation on all the $I$ groups, which affects the $t$ value if $I \geqslant 3$. It also affects the corresponding degrees of freedom.
n.a.n.a.n.a.Pooled standard deviation
---$ \begin{aligned} s_p &= \sqrt{\dfrac{(n_1 - 1) \times s^2_1 + (n_2 - 1) \times s^2_2 + \ldots + (n_I - 1) \times s^2_I}{N - I}}\\ &= \sqrt{\dfrac{\sum\nolimits_{subjects} (\mbox{subject's score} - \mbox{its group mean})^2}{N - I}}\\ &= \sqrt{\dfrac{\mbox{sum of squares error}}{\mbox{degrees of freedom error}}}\\ &= \sqrt{\mbox{mean square error}} \end{aligned} $

Here $s^2_i$ is the variance in group $i.$
Sampling distribution of $t$ if H0 were trueSampling distribution of $H$ if H0 were trueSampling distribution of $t$ if H0 were trueSampling distribution of $F$ and of $t$ if H0 were true
Approximately the $t$ distribution with $k$ degrees of freedom, with $k$ equal to
$k = \dfrac{\Bigg(\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}\Bigg)^2}{\dfrac{1}{n_1 - 1} \Bigg(\dfrac{s^2_1}{n_1}\Bigg)^2 + \dfrac{1}{n_2 - 1} \Bigg(\dfrac{s^2_2}{n_2}\Bigg)^2}$
or
$k$ = the smaller of $n_1$ - 1 and $n_2$ - 1

First definition of $k$ is used by computer programs, second definition is often used for hand calculations.

For large samples, approximately the chi-squared distribution with $I - 1$ degrees of freedom.

For small samples, the exact distribution of $H$ should be used.

$t$ distribution with $N - 1$ degrees of freedomSampling distribution of $F$:
  • $F$ distribution with $I - 1$ (df between, numerator) and $N - I$ (df error, denominator) degrees of freedom
Sampling distribution of $t$:
  • $t$ distribution with $N - I$ degrees of freedom
Significant?Significant?Significant?Significant?
Two sided: Right sided: Left sided: For large samples, the table with critical $X^2$ values can be used. If we denote $X^2 = H$:
  • Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
  • Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
Two sided: Right sided: Left sided: $F$ test:
  • Check if $F$ observed in sample is equal to or larger than critical value $F^*$ or
  • Find $p$ value corresponding to observed $F$ and check if it is equal to or smaller than $\alpha$ (e.g. .01 < $p$ < .025 when $F$ = 3.91, df between = 4, and df error = 20)

$t$ Test for contrast two sided: $t$ Test for contrast right sided: $t$ Test for contrast left sided:
$t$ Test multiple comparisons two sided:
  • Check if $t$ observed in sample is at least as extreme as critical value $t^{**}$. Adapt $t^{**}$ according to a multiple comparison procedure (e.g., Bonferroni) or
  • Find two sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$. Adapt the $p$ value or $\alpha$ according to a multiple comparison procedure
$t$ Test multiple comparisons right sided
  • Check if $t$ observed in sample is equal to or larger than critical value $t^{**}$. Adapt $t^{**}$ according to a multiple comparison procedure (e.g., Bonferroni) or
  • Find right sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$. Adapt the $p$ value or $\alpha$ according to a multiple comparison procedure
$t$ Test multiple comparisons left sided
  • Check if $t$ observed in sample is equal to or smaller than critical value $t^{**}$. Adapt $t^{**}$ according to a multiple comparison procedure (e.g., Bonferroni) or
  • Find left sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$. Adapt the $p$ value or $\alpha$ according to a multiple comparison procedure
Approximate $C\%$ confidence interval for $\mu_1 - \mu_2$n.a.$C\%$ confidence interval for $\mu$$C\%$ confidence interval for $\Psi$, for $\mu_g - \mu_h$, and for $\mu_i$
$(\bar{y}_1 - \bar{y}_2) \pm t^* \times \sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}$
where the critical value $t^*$ is the value under the $t_{k}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20).

The confidence interval for $\mu_1 - \mu_2$ can also be used as significance test.
-$\bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}}$
where the critical value $t^*$ is the value under the $t_{N-1}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20).

The confidence interval for $\mu$ can also be used as significance test.
Confidence interval for $\Psi$ (contrast):
  • $c \pm t^* \times s_p\sqrt{\sum \dfrac{a^2_i}{n_i}}$
    where the critical value $t^*$ is the value under the $t_{N - I}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). Note that $n_i$ is the sample size of group $i$, and $N$ is the total sample size, based on all the $I$ groups.
Confidence interval for $\mu_g - \mu_h$ (multiple comparisons):
  • $(\bar{y}_g - \bar{y}_h) \pm t^{**} \times s_p\sqrt{\dfrac{1}{n_g} + \dfrac{1}{n_h}}$
    where $t^{**}$ depends upon $C$, degrees of freedom ($N - I$), and the multiple comparison procedure. If you do not want to apply a multiple comparison procedure, $t^{**} = t^* = $ the value under the $t_{N - I}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$. Note that $n_g$ is the sample size of group $g$, $n_h$ is the sample size of group $h$, and $N$ is the total sample size, based on all the $I$ groups.
Confidence interval for single population mean $\mu_i$:
  • $\bar{y}_i \pm t^* \times \dfrac{s_p}{\sqrt{n_i}}$
    where $\bar{y}_i$ is the sample mean in group $i$, $n_i$ is the sample size of group $i$, and the critical value $t^*$ is the value under the $t_{N - I}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). Note that $n_i$ is the sample size of group $i$, and $N$ is the total sample size, based on all the $I$ groups.
n.a.n.a.Effect sizeEffect size
--Cohen's $d$:
Standardized difference between the sample mean of the difference scores and $\mu_0$: $$d = \frac{\bar{y} - \mu_0}{s}$$ Cohen's $d$ indicates how many standard deviations $s$ the sample mean of the difference scores $\bar{y}$ is removed from $\mu_0.$
  • Proportion variance explained $\eta^2$ and $R^2$:
    Proportion variance of the dependent variable $y$ explained by the independent variable: $$ \begin{align} \eta^2 = R^2 &= \dfrac{\mbox{sum of squares between}}{\mbox{sum of squares total}} \end{align} $$ Only in one way ANOVA $\eta^2 = R^2.$ $\eta^2$ (and $R^2$) is the proportion variance explained in the sample. It is a positively biased estimate of the proportion variance explained in the population.

  • Proportion variance explained $\omega^2$:
    Corrects for the positive bias in $\eta^2$ and is equal to: $$\omega^2 = \frac{\mbox{sum of squares between} - \mbox{df between} \times \mbox{mean square error}}{\mbox{sum of squares total} + \mbox{mean square error}}$$ $\omega^2$ is a better estimate of the explained variance in the population than $\eta^2.$

  • Cohen's $d$:
    Standardized difference between the mean in group $g$ and in group $h$: $$d_{g,h} = \frac{\bar{y}_g - \bar{y}_h}{s_p}$$ Cohen's $d$ indicates how many standard deviations $s_p$ two sample means are removed from each other.
Visual representationn.a.Visual representationn.a.
Two sample t test - equal variances not assumed
-
Paired sample t test
-
n.a.n.a.n.a.ANOVA table
---
ANOVA table

Click the link for a step by step explanation of how to compute the sum of squares.
n.a.n.a.Equivalent toEquivalent to
--
  • One sample $t$ test on the difference scores.
  • Repeated measures ANOVA with one dichotomous within subjects factor.
OLS regression with one categorical independent variable transformed into $I - 1$ code variables:
  • $F$ test ANOVA is equivalent to $F$ test regression model
  • $t$ test for contrast $i$ is equivalent to $t$ test for regression coefficient $\beta_i$ (specific contrast tested depends on how the code variables are defined)
Example contextExample contextExample contextExample context
Is the average mental health score different between men and women?Do people from different religions tend to score differently on social economic status? Is the average difference between the mental health scores before and after an intervention different from $\mu_0 = 0$?Is the average mental health score different between people from a low, moderate, and high economic class?
SPSSSPSSSPSSSPSS
Analyze > Compare Means > Independent-Samples T Test...
  • Put your dependent (quantitative) variable in the box below Test Variable(s) and your independent (grouping) variable in the box below Grouping Variable
  • Click on the Define Groups... button. If you can't click on it, first click on the grouping variable so its background turns yellow
  • Fill in the value you have used to indicate your first group in the box next to Group 1, and the value you have used to indicate your second group in the box next to Group 2
  • Continue and click OK
Analyze > Nonparametric Tests > Legacy Dialogs > K Independent Samples...
  • Put your dependent variable in the box below Test Variable List and your independent (grouping) variable in the box below Grouping Variable
  • Click on the Define Range... button. If you can't click on it, first click on the grouping variable so its background turns yellow
  • Fill in the smallest value you have used to indicate your groups in the box next to Minimum, and the largest value you have used to indicate your groups in the box next to Maximum
  • Continue and click OK
Analyze > Compare Means > Paired-Samples T Test...
  • Put the two paired variables in the boxes below Variable 1 and Variable 2
Analyze > Compare Means > One-Way ANOVA...
  • Put your dependent (quantitative) variable in the box below Dependent List and your independent (grouping) variable in the box below Factor
or
Analyze > General Linear Model > Univariate...
  • Put your dependent (quantitative) variable in the box below Dependent Variable and your independent (grouping) variable in the box below Fixed Factor(s)
JamoviJamoviJamoviJamovi
T-Tests > Independent Samples T-Test
  • Put your dependent (quantitative) variable in the box below Dependent Variables and your independent (grouping) variable in the box below Grouping Variable
  • Under Tests, select Welch's
  • Under Hypothesis, select your alternative hypothesis
ANOVA > One Way ANOVA - Kruskal-Wallis
  • Put your dependent variable in the box below Dependent Variables and your independent (grouping) variable in the box below Grouping Variable
T-Tests > Paired Samples T-Test
  • Put the two paired variables in the box below Paired Variables, one on the left side of the vertical line and one on the right side of the vertical line
  • Under Hypothesis, select your alternative hypothesis
ANOVA > ANOVA
  • Put your dependent (quantitative) variable in the box below Dependent Variable and your independent (grouping) variable in the box below Fixed Factors
Practice questionsPractice questionsPractice questionsPractice questions