Two sample t test  equal variances not assumed  overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
Two sample $t$ test  equal variances not assumed  Spearman's rho  Friedman test 


Independent/grouping variable  Variable 1  Independent/grouping variable  
One categorical with 2 independent groups  One of ordinal level  One within subject factor ($\geq 2$ related groups)  
Dependent variable  Variable 2  Dependent variable  
One quantitative of interval or ratio level  One of ordinal level  One of ordinal level  
Null hypothesis  Null hypothesis  Null hypothesis  
H_{0}: $\mu_1 = \mu_2$
Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2.  H_{0}: $\rho_s = 0$
Here $\rho_s$ is the Spearman correlation in the population. The Spearman correlation is a measure for the strength and direction of the monotonic relationship between two variables of at least ordinal measurement level. In words, the null hypothesis would be: H_{0}: there is no monotonic relationship between the two variables in the population.  H_{0}: the population scores in any of the related groups are not systematically higher or lower than the population scores in any of the other related groups
Usually the related groups are the different measurement points. Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher.  
Alternative hypothesis  Alternative hypothesis  Alternative hypothesis  
H_{1} two sided: $\mu_1 \neq \mu_2$ H_{1} right sided: $\mu_1 > \mu_2$ H_{1} left sided: $\mu_1 < \mu_2$  H_{1} two sided: $\rho_s \neq 0$ H_{1} right sided: $\rho_s > 0$ H_{1} left sided: $\rho_s < 0$  H_{1}: the population scores in some of the related groups are systematically higher or lower than the population scores in other related groups  
Assumptions  Assumptions  Assumptions  


 
Test statistic  Test statistic  Test statistic  
$t = \dfrac{(\bar{y}_1  \bar{y}_2)  0}{\sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}} = \dfrac{\bar{y}_1  \bar{y}_2}{\sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $s^2_1$ is the sample variance in group 1, $s^2_2$ is the sample variance in group 2, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis. The denominator $\sqrt{\frac{s^2_1}{n_1} + \frac{s^2_2}{n_2}}$ is the standard error of the sampling distribution of $\bar{y}_1  \bar{y}_2$. The $t$ value indicates how many standard errors $\bar{y}_1  \bar{y}_2$ is removed from 0. Note: we could just as well compute $\bar{y}_2  \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$.  $t = \dfrac{r_s \times \sqrt{N  2}}{\sqrt{1  r_s^2}} $ Here $r_s$ is the sample Spearman correlation and $N$ is the sample size. The sample Spearman correlation $r_s$ is equal to the Pearson correlation applied to the rank scores.  $Q = \dfrac{12}{N \times k(k + 1)} \sum R^2_i  3 \times N(k + 1)$
Here $N$ is the number of 'blocks' (usually the subjects  so if you have 4 repeated measurements for 60 subjects, $N$ equals 60), $k$ is the number of related groups (usually the number of repeated measurements), and $R_i$ is the sum of ranks in group $i$. Remember that multiplication precedes addition, so first compute $\frac{12}{N \times k(k + 1)} \times \sum R^2_i$ and then subtract $3 \times N(k + 1)$. Note: if ties are present in the data, the formula for $Q$ is more complicated.  
Sampling distribution of $t$ if H_{0} were true  Sampling distribution of $t$ if H_{0} were true  Sampling distribution of $Q$ if H_{0} were true  
Approximately the $t$ distribution with $k$ degrees of freedom, with $k$ equal to $k = \dfrac{\Bigg(\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}\Bigg)^2}{\dfrac{1}{n_1  1} \Bigg(\dfrac{s^2_1}{n_1}\Bigg)^2 + \dfrac{1}{n_2  1} \Bigg(\dfrac{s^2_2}{n_2}\Bigg)^2}$ or $k$ = the smaller of $n_1$  1 and $n_2$  1 First definition of $k$ is used by computer programs, second definition is often used for hand calculations.  Approximately the $t$ distribution with $N  2$ degrees of freedom  If the number of blocks $N$ is large, approximately the chisquared distribution with $k  1$ degrees of freedom.
For small samples, the exact distribution of $Q$ should be used.  
Significant?  Significant?  Significant?  
Two sided:
 Two sided:
 If the number of blocks $N$ is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
 
Approximate $C\%$ confidence interval for $\mu_1  \mu_2$  n.a.  n.a.  
$(\bar{y}_1  \bar{y}_2) \pm t^* \times \sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}$
where the critical value $t^*$ is the value under the $t_{k}$ distribution with the area $C / 100$ between $t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). The confidence interval for $\mu_1  \mu_2$ can also be used as significance test.      
Visual representation  n.a.  n.a.  
    
Example context  Example context  Example context  
Is the average mental health score different between men and women?  Is there a monotonic relationship between physical health and mental health?  Is there a difference in depression level between measurement point 1 (preintervention), measurement point 2 (1 week postintervention), and measurement point 3 (6 weeks postintervention)?  
SPSS  SPSS  SPSS  
Analyze > Compare Means > IndependentSamples T Test...
 Analyze > Correlate > Bivariate...
 Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
 
Jamovi  Jamovi  Jamovi  
TTests > Independent Samples TTest
 Regression > Correlation Matrix
 ANOVA > Repeated Measures ANOVA  Friedman
 
Practice questions  Practice questions  Practice questions  