Two sample t test  equal variances not assumed  overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
Two sample $t$ test  equal variances not assumed  Spearman's rho  McNemar's test  Wilcoxon signedrank test 


Independent/grouping variable  Variable 1  Independent variable  Independent variable  
One categorical with 2 independent groups  One of ordinal level  2 paired groups  2 paired groups  
Dependent variable  Variable 2  Dependent variable  Dependent variable  
One quantitative of interval or ratio level  One of ordinal level  One categorical with 2 independent groups  One quantitative of interval or ratio level  
Null hypothesis  Null hypothesis  Null hypothesis  Null hypothesis  
H_{0}: $\mu_1 = \mu_2$
Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2.  H_{0}: $\rho_s = 0$
Here $\rho_s$ is the Spearman correlation in the population. The Spearman correlation is a measure for the strength and direction of the monotonic relationship between two variables of at least ordinal measurement level. In words, the null hypothesis would be: H_{0}: there is no monotonic relationship between the two variables in the population.  Let's say that the scores on the dependent variable are scored 0 and 1. Then for each pair of scores, the data allow four options:
Other formulations of the null hypothesis are:
 H_{0}: $m = 0$
Here $m$ is the population median of the difference scores. A difference score is the difference between the first score of a pair and the second score of a pair. Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher.  
Alternative hypothesis  Alternative hypothesis  Alternative hypothesis  Alternative hypothesis  
H_{1} two sided: $\mu_1 \neq \mu_2$ H_{1} right sided: $\mu_1 > \mu_2$ H_{1} left sided: $\mu_1 < \mu_2$  H_{1} two sided: $\rho_s \neq 0$ H_{1} right sided: $\rho_s > 0$ H_{1} left sided: $\rho_s < 0$  The alternative hypothesis H_{1} is that for each pair of scores, P(first score of pair is 0 while second score of pair is 1) $\neq$ P(first score of pair is 1 while second score of pair is 0). That is, the probability that a pair of scores switches from 0 to 1 is not the same as the probability that a pair of scores switches from 1 to 0. Other formulations of the alternative hypothesis are:
 H_{1} two sided: $m \neq 0$ H_{1} right sided: $m > 0$ H_{1} left sided: $m < 0$  
Assumptions  Assumptions  Assumptions  Assumptions  



 
Test statistic  Test statistic  Test statistic  Test statistic  
$t = \dfrac{(\bar{y}_1  \bar{y}_2)  0}{\sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}} = \dfrac{\bar{y}_1  \bar{y}_2}{\sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $s^2_1$ is the sample variance in group 1, $s^2_2$ is the sample variance in group 2, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis. The denominator $\sqrt{\frac{s^2_1}{n_1} + \frac{s^2_2}{n_2}}$ is the standard error of the sampling distribution of $\bar{y}_1  \bar{y}_2$. The $t$ value indicates how many standard errors $\bar{y}_1  \bar{y}_2$ is removed from 0. Note: we could just as well compute $\bar{y}_2  \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$.  $t = \dfrac{r_s \times \sqrt{N  2}}{\sqrt{1  r_s^2}} $ Here $r_s$ is the sample Spearman correlation and $N$ is the sample size. The sample Spearman correlation $r_s$ is equal to the Pearson correlation applied to the rank scores.  $X^2 = \dfrac{(b  c)^2}{b + c}$
Here $b$ is the number of pairs in the sample for which the first score is 0 while the second score is 1, and $c$ is the number of pairs in the sample for which the first score is 1 while the second score is 0.  Two different types of test statistics can be used, but both will result in the same test outcome. We will denote the first option the $W_1$ statistic (also known as the $T$ statistic), and the second option the $W_2$ statistic.
In order to compute each of the test statistics, follow the steps below:
 
Sampling distribution of $t$ if H_{0} were true  Sampling distribution of $t$ if H_{0} were true  Sampling distribution of $X^2$ if H_{0} were true  Sampling distribution of $W_1$ and of $W_2$ if H_{0} were true  
Approximately the $t$ distribution with $k$ degrees of freedom, with $k$ equal to $k = \dfrac{\Bigg(\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}\Bigg)^2}{\dfrac{1}{n_1  1} \Bigg(\dfrac{s^2_1}{n_1}\Bigg)^2 + \dfrac{1}{n_2  1} \Bigg(\dfrac{s^2_2}{n_2}\Bigg)^2}$ or $k$ = the smaller of $n_1$  1 and $n_2$  1 First definition of $k$ is used by computer programs, second definition is often used for hand calculations.  Approximately the $t$ distribution with $N  2$ degrees of freedom  If $b + c$ is large enough (say, > 20), approximately the chisquared distribution with 1 degree of freedom. If $b + c$ is small, the Binomial($n$, $P$) distribution should be used, with $n = b + c$ and $P = 0.5$. In that case the test statistic becomes equal to $b$.  Sampling distribution of $W_1$:
If $N_r$ is large, $W_1$ is approximately normally distributed with mean $\mu_{W_1}$ and standard deviation $\sigma_{W_1}$ if the null hypothesis were true. Here $$\mu_{W_1} = \frac{N_r(N_r + 1)}{4}$$ $$\sigma_{W_1} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{24}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_1  \mu_{W_1}}{\sigma_{W_1}}$$ follows approximately the standard normal distribution if the null hypothesis were true. Sampling distribution of $W_2$: If $N_r$ is large, $W_2$ is approximately normally distributed with mean $0$ and standard deviation $\sigma_{W_2}$ if the null hypothesis were true. Here $$\sigma_{W_2} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{6}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_2}{\sigma_{W_2}}$$ follows approximately the standard normal distribution if the null hypothesis were true. If $N_r$ is small, the exact distribution of $W_1$ or $W_2$ should be used. Note: if ties are present in the data, the formula for the standard deviations $\sigma_{W_1}$ and $\sigma_{W_2}$ is more complicated.  
Significant?  Significant?  Significant?  Significant?  
Two sided:
 Two sided:
 For test statistic $X^2$:
 For large samples, the table for standard normal probabilities can be used: Two sided:
 
Approximate $C\%$ confidence interval for $\mu_1  \mu_2$  n.a.  n.a.  n.a.  
$(\bar{y}_1  \bar{y}_2) \pm t^* \times \sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}$
where the critical value $t^*$ is the value under the $t_{k}$ distribution with the area $C / 100$ between $t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). The confidence interval for $\mu_1  \mu_2$ can also be used as significance test.        
Visual representation  n.a.  n.a.  n.a.  
      
n.a.  n.a.  Equivalent to  n.a.  
   
   
Example context  Example context  Example context  Example context  
Is the average mental health score different between men and women?  Is there a monotonic relationship between physical health and mental health?  Does a tv documentary about spiders change whether people are afraid (yes/no) of spiders?  Is the median of the differences between the mental health scores before and after an intervention different from 0?  
SPSS  SPSS  SPSS  SPSS  
Analyze > Compare Means > IndependentSamples T Test...
 Analyze > Correlate > Bivariate...
 Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
 Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
 
Jamovi  Jamovi  Jamovi  Jamovi  
TTests > Independent Samples TTest
 Regression > Correlation Matrix
 Frequencies > Paired Samples  McNemar test
 TTests > Paired Samples TTest
 
Practice questions  Practice questions  Practice questions  Practice questions  