Two sample t test - equal variances not assumed - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons (max. of 3) by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Two sample $t$ test - equal variances not assumed
Spearman's rho
McNemar's test
Wilcoxon signed-rank test
Sign test
Independent/grouping variableVariable 1Independent variableIndependent variableIndependent variable
One categorical with 2 independent groupsOne of ordinal level2 paired groups2 paired groups2 paired groups
Dependent variableVariable 2Dependent variableDependent variableDependent variable
One quantitative of interval or ratio levelOne of ordinal levelOne categorical with 2 independent groupsOne quantitative of interval or ratio levelOne of ordinal level
Null hypothesisNull hypothesisNull hypothesisNull hypothesisNull hypothesis
H0: $\mu_1 = \mu_2$

Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2.
H0: $\rho_s = 0$

Here $\rho_s$ is the Spearman correlation in the population. The Spearman correlation is a measure for the strength and direction of the monotonic relationship between two variables of at least ordinal measurement level.

In words, the null hypothesis would be:

H0: there is no monotonic relationship between the two variables in the population.

Let's say that the scores on the dependent variable are scored 0 and 1. Then for each pair of scores, the data allow four options:

  1. First score of pair is 0, second score of pair is 0
  2. First score of pair is 0, second score of pair is 1 (switched)
  3. First score of pair is 1, second score of pair is 0 (switched)
  4. First score of pair is 1, second score of pair is 1
The null hypothesis H0 is that for each pair of scores, P(first score of pair is 0 while second score of pair is 1) = P(first score of pair is 1 while second score of pair is 0). That is, the probability that a pair of scores switches from 0 to 1 is the same as the probability that a pair of scores switches from 1 to 0.

Other formulations of the null hypothesis are:

  • H0: $\pi_1 = \pi_2$, where $\pi_1$ is the population proportion of ones for the first paired group and $\pi_2$ is the population proportion of ones for the second paired group
  • H0: for each pair of scores, P(first score of pair is 1) = P(second score of pair is 1)

H0: $m = 0$

Here $m$ is the population median of the difference scores. A difference score is the difference between the first score of a pair and the second score of a pair.

Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher.
  • H0: P(first score of a pair exceeds second score of a pair) = P(second score of a pair exceeds first score of a pair)
If the dependent variable is measured on a continuous scale, this can also be formulated as:
  • H0: the population median of the difference scores is equal to zero
A difference score is the difference between the first score of a pair and the second score of a pair.
Alternative hypothesisAlternative hypothesisAlternative hypothesisAlternative hypothesisAlternative hypothesis
H1 two sided: $\mu_1 \neq \mu_2$
H1 right sided: $\mu_1 > \mu_2$
H1 left sided: $\mu_1 < \mu_2$
H1 two sided: $\rho_s \neq 0$
H1 right sided: $\rho_s > 0$
H1 left sided: $\rho_s < 0$

The alternative hypothesis H1 is that for each pair of scores, P(first score of pair is 0 while second score of pair is 1) $\neq$ P(first score of pair is 1 while second score of pair is 0). That is, the probability that a pair of scores switches from 0 to 1 is not the same as the probability that a pair of scores switches from 1 to 0.

Other formulations of the alternative hypothesis are:

  • H1: $\pi_1 \neq \pi_2$
  • H1: for each pair of scores, P(first score of pair is 1) $\neq$ P(second score of pair is 1)

H1 two sided: $m \neq 0$
H1 right sided: $m > 0$
H1 left sided: $m < 0$
  • H1 two sided: P(first score of a pair exceeds second score of a pair) $\neq$ P(second score of a pair exceeds first score of a pair)
  • H1 right sided: P(first score of a pair exceeds second score of a pair) > P(second score of a pair exceeds first score of a pair)
  • H1 left sided: P(first score of a pair exceeds second score of a pair) < P(second score of a pair exceeds first score of a pair)
If the dependent variable is measured on a continuous scale, this can also be formulated as:
  • H1 two sided: the population median of the difference scores is different from zero
  • H1 right sided: the population median of the difference scores is larger than zero
  • H1 left sided: the population median of the difference scores is smaller than zero
AssumptionsAssumptionsAssumptionsAssumptionsAssumptions
  • Within each population, the scores on the dependent variable are normally distributed
  • Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2. That is, within and between groups, observations are independent of one another
  • Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
Note: this assumption is only important for the significance test, not for the correlation coefficient itself. The correlation coefficient itself just measures the strength of the monotonic relationship between two variables.
  • Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
  • The population distribution of the difference scores is symmetric
  • Sample of difference scores is a simple random sample from the population of difference scores. That is, difference scores are independent of one another
Note: sometimes it considered sufficient for the data to be measured on an ordinal scale, rather than an interval or ratio scale. However, since the test statistic is based on ranked difference scores, we need to know whether a change in scores from, say, 6 to 7 is larger than/smaller than/equal to a change from 5 to 6. This is impossible to know for ordinal scales, since for these scales the size of the difference between values is meaningless.
  • Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
Test statisticTest statisticTest statisticTest statisticTest statistic
$t = \dfrac{(\bar{y}_1 - \bar{y}_2) - 0}{\sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}} = \dfrac{\bar{y}_1 - \bar{y}_2}{\sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $s^2_1$ is the sample variance in group 1, $s^2_2$ is the sample variance in group 2, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis.

The denominator $\sqrt{\frac{s^2_1}{n_1} + \frac{s^2_2}{n_2}}$ is the standard error of the sampling distribution of $\bar{y}_1 - \bar{y}_2$. The $t$ value indicates how many standard errors $\bar{y}_1 - \bar{y}_2$ is removed from 0.

Note: we could just as well compute $\bar{y}_2 - \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$.
$t = \dfrac{r_s \times \sqrt{N - 2}}{\sqrt{1 - r_s^2}} $
Here $r_s$ is the sample Spearman correlation and $N$ is the sample size. The sample Spearman correlation $r_s$ is equal to the Pearson correlation applied to the rank scores.
$X^2 = \dfrac{(b - c)^2}{b + c}$
Here $b$ is the number of pairs in the sample for which the first score is 0 while the second score is 1, and $c$ is the number of pairs in the sample for which the first score is 1 while the second score is 0.
Two different types of test statistics can be used, but both will result in the same test outcome. We will denote the first option the $W_1$ statistic (also known as the $T$ statistic), and the second option the $W_2$ statistic. In order to compute each of the test statistics, follow the steps below:
  1. For each subject, compute the sign of the difference score $\mbox{sign}_d = \mbox{sgn}(\mbox{score}_2 - \mbox{score}_1)$. The sign is 1 if the difference is larger than zero, -1 if the diffence is smaller than zero, and 0 if the difference is equal to zero.
  2. For each subject, compute the absolute value of the difference score $|\mbox{score}_2 - \mbox{score}_1|$.
  3. Exclude subjects with a difference score of zero. This leaves us with a remaining number of difference scores equal to $N_r$.
  4. Assign ranks $R_d$ to the $N_r$ remaining absolute difference scores. The smallest absolute difference score corresponds to a rank score of 1, and the largest absolute difference score corresponds to a rank score of $N_r$. If there are ties, assign them the average of the ranks they occupy.
Then compute the test statistic:

  • $W_1 = \sum\, R_d^{+}$
    or
    $W_1 = \sum\, R_d^{-}$
    That is, sum all ranks corresponding to a positive difference or sum all ranks corresponding to a negative difference. Theoratically, both definitions will result in the same test outcome. However:
    • tables with critical values for $W_1$ are usually based on the smaller of $\sum\, R_d^{+}$ and $\sum\, R_d^{-}$. So if you are using such a table, pick the smaller one.
    • If you are using the normal approximation to find the $p$ value, it makes things most straightforward if you use $W_1 = \sum\, R_d^{+}$ (if you use $W_1 = \sum\, R_d^{-}$, the right and left sided alternative hypotheses 'flip').
  • $W_2 = \sum\, \mbox{sign}_d \times R_d$
    That is, for each remaining difference score, multiply the rank of the absolute difference score by the sign of the difference score, and then sum all of the products.
$W = $ number of difference scores that is larger than 0
Sampling distribution of $t$ if H0 were trueSampling distribution of $t$ if H0 were trueSampling distribution of $X^2$ if H0 were trueSampling distribution of $W_1$ and of $W_2$ if H0 were trueSampling distribution of $W$ if H0 were true
Approximately the $t$ distribution with $k$ degrees of freedom, with $k$ equal to
$k = \dfrac{\Bigg(\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}\Bigg)^2}{\dfrac{1}{n_1 - 1} \Bigg(\dfrac{s^2_1}{n_1}\Bigg)^2 + \dfrac{1}{n_2 - 1} \Bigg(\dfrac{s^2_2}{n_2}\Bigg)^2}$
or
$k$ = the smaller of $n_1$ - 1 and $n_2$ - 1

First definition of $k$ is used by computer programs, second definition is often used for hand calculations.
Approximately the $t$ distribution with $N - 2$ degrees of freedom

If $b + c$ is large enough (say, > 20), approximately the chi-squared distribution with 1 degree of freedom.

If $b + c$ is small, the Binomial($n$, $P$) distribution should be used, with $n = b + c$ and $P = 0.5$. In that case the test statistic becomes equal to $b$.

Sampling distribution of $W_1$:
If $N_r$ is large, $W_1$ is approximately normally distributed with mean $\mu_{W_1}$ and standard deviation $\sigma_{W_1}$ if the null hypothesis were true. Here $$\mu_{W_1} = \frac{N_r(N_r + 1)}{4}$$ $$\sigma_{W_1} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{24}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_1 - \mu_{W_1}}{\sigma_{W_1}}$$ follows approximately the standard normal distribution if the null hypothesis were true.

Sampling distribution of $W_2$:
If $N_r$ is large, $W_2$ is approximately normally distributed with mean $0$ and standard deviation $\sigma_{W_2}$ if the null hypothesis were true. Here $$\sigma_{W_2} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{6}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_2}{\sigma_{W_2}}$$ follows approximately the standard normal distribution if the null hypothesis were true.

If $N_r$ is small, the exact distribution of $W_1$ or $W_2$ should be used.

Note: if ties are present in the data, the formula for the standard deviations $\sigma_{W_1}$ and $\sigma_{W_2}$ is more complicated.
The exact distribution of $W$ under the null hypothesis is the Binomial($n$, $P$) distribution, with $n =$ number of positive differences $+$ number of negative differences, and $P = 0.5$.

If $n$ is large, $W$ is approximately normally distributed under the null hypothesis, with mean $nP = n \times 0.5$ and standard deviation $\sqrt{nP(1-P)} = \sqrt{n \times 0.5(1 - 0.5)}$. Hence, if $n$ is large, the standardized test statistic $$z = \frac{W - n \times 0.5}{\sqrt{n \times 0.5(1 - 0.5)}}$$ follows approximately the standard normal distribution if the null hypothesis were true.
Significant?Significant?Significant?Significant?Significant?
Two sided: Right sided: Left sided: Two sided: Right sided: Left sided: For test statistic $X^2$:
  • Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
  • Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
If $b + c$ is small, the table for the binomial distribution should be used, with as test statistic $b$:
  • Check if $b$ observed in sample is in the rejection region or
  • Find two sided $p$ value corresponding to observed $b$ and check if it is equal to or smaller than $\alpha$
For large samples, the table for standard normal probabilities can be used:
Two sided: Right sided: Left sided:
If $n$ is small, the table for the binomial distribution should be used:
Two sided:
  • Check if $W$ observed in sample is in the rejection region or
  • Find two sided $p$ value corresponding to observed $W$ and check if it is equal to or smaller than $\alpha$
Right sided:
  • Check if $W$ observed in sample is in the rejection region or
  • Find right sided $p$ value corresponding to observed $W$ and check if it is equal to or smaller than $\alpha$
Left sided:
  • Check if $W$ observed in sample is in the rejection region or
  • Find left sided $p$ value corresponding to observed $W$ and check if it is equal to or smaller than $\alpha$

If $n$ is large, the table for standard normal probabilities can be used:
Two sided: Right sided: Left sided:
Approximate $C\%$ confidence interval for $\mu_1 - \mu_2$n.a.n.a.n.a.n.a.
$(\bar{y}_1 - \bar{y}_2) \pm t^* \times \sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}$
where the critical value $t^*$ is the value under the $t_{k}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20).

The confidence interval for $\mu_1 - \mu_2$ can also be used as significance test.
----
Visual representationn.a.n.a.n.a.n.a.
Two sample t test - equal variances not assumed
----
n.a.n.a.Equivalent ton.a.Equivalent to
--- Two sided sign test is equivalent to
Example contextExample contextExample contextExample contextExample context
Is the average mental health score different between men and women?Is there a monotonic relationship between physical health and mental health?Does a tv documentary about spiders change whether people are afraid (yes/no) of spiders?Is the median of the differences between the mental health scores before and after an intervention different from 0?Do people tend to score higher on mental health after a mindfulness course?
SPSSSPSSSPSSSPSSSPSS
Analyze > Compare Means > Independent-Samples T Test...
  • Put your dependent (quantitative) variable in the box below Test Variable(s) and your independent (grouping) variable in the box below Grouping Variable
  • Click on the Define Groups... button. If you can't click on it, first click on the grouping variable so its background turns yellow
  • Fill in the value you have used to indicate your first group in the box next to Group 1, and the value you have used to indicate your second group in the box next to Group 2
  • Continue and click OK
Analyze > Correlate > Bivariate...
  • Put your two variables in the box below Variables
  • Under Correlation Coefficients, select Spearman
Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
  • Put the two paired variables in the boxes below Variable 1 and Variable 2
  • Under Test Type, select the McNemar test
Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
  • Put the two paired variables in the boxes below Variable 1 and Variable 2
  • Under Test Type, select the Wilcoxon test
Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
  • Put the two paired variables in the boxes below Variable 1 and Variable 2
  • Under Test Type, select the Sign test
JamoviJamoviJamoviJamoviJamovi
T-Tests > Independent Samples T-Test
  • Put your dependent (quantitative) variable in the box below Dependent Variables and your independent (grouping) variable in the box below Grouping Variable
  • Under Tests, select Welch's
  • Under Hypothesis, select your alternative hypothesis
Regression > Correlation Matrix
  • Put your two variables in the white box at the right
  • Under Correlation Coefficients, select Spearman
  • Under Hypothesis, select your alternative hypothesis
Frequencies > Paired Samples - McNemar test
  • Put one of the two paired variables in the box below Rows and the other paired variable in the box below Columns
T-Tests > Paired Samples T-Test
  • Put the two paired variables in the box below Paired Variables, one on the left side of the vertical line and one on the right side of the vertical line
  • Under Tests, select Wilcoxon rank
  • Under Hypothesis, select your alternative hypothesis
Jamovi does not have a specific option for the sign test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the two sided $p$ value that would have resulted from the sign test. Go to:

ANOVA > Repeated Measures ANOVA - Friedman
  • Put the two paired variables in the box below Measures
Practice questionsPractice questionsPractice questionsPractice questionsPractice questions